Cargando…
METB-10. EXPLAINABLE ARTIFICIAL INTELLIGENCE REVEALS DNA METHYLATION PATTERNS UNDERLYING BRAIN TUMOR CLASSIFICATION
Over 100 different molecular classes of brain tumors are recognized across histopathological grades and age groups. Their precise diagnosis is crucial for prognostication and appropriate treatment decisions, particularly in pediatric patients. Recently, a random forest-based classifier trained on ge...
Autores principales: | Benfatto, Salvatore, Hovestadt, Volker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260170/ http://dx.doi.org/10.1093/neuonc/noad073.127 |
Ejemplares similares
-
METB-09. GERMLINE PATHOGENIC VARIANTS IN 838 PEDIATRIC BRAIN TUMOR PATIENTS
por: McQuaid, Shelly W, et al.
Publicado: (2023) -
METB-13. A SINGLE-CELL GENETIC IN VIVO LINEAGE-TRACING PLATFORM FOR MEDULLOBLASTOMA
por: Jung, Jangham, et al.
Publicado: (2023) -
METB-12. CLINICAL MONITORING OF MEASURABLE RESIDUAL DISEASE BY CELL-FREE DNA IN PEDIATRIC BRAIN TUMORS
por: Crotty, Erin, et al.
Publicado: (2023) -
METB-04. THE MOLECULAR CHARACTERIZATION INITIATIVE (MCI): A CLINICAL AND GENOMIC RESOURCE FOR THE PEDIATRIC BRAIN TUMOR COMMUNITY
por: Leary, Sarah, et al.
Publicado: (2023) -
METB-02. DECIPHERING THE CELLULAR HETEROGENEITY OF INFANT-TYPE HEMISPHERIC GLIOMAS USING SINGLE-NUCLEI MULTI-OMICS
por: De Micheli, Andrea J, et al.
Publicado: (2023)