Cargando…
The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study
BACKGROUND: Achalasia is a primary esophageal motility disorder with potential molecular pathogenesis remaining uncertain. This study aimed to identify the differentially expressed proteins and potential pathways among achalasia subtypes and controls to further reveal the molecular pathogenesis of a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260389/ https://www.ncbi.nlm.nih.gov/pubmed/37324545 http://dx.doi.org/10.1093/gastro/goad031 |
_version_ | 1785057849559220224 |
---|---|
author | Chen, Songfeng Xing, Xiangbin Hou, Xun Zhuang, Qianjun Tan, Niandi Cui, Yi Wang, Jinhui Zhang, Mengyu Hu, Shixian Xiao, Yinglian |
author_facet | Chen, Songfeng Xing, Xiangbin Hou, Xun Zhuang, Qianjun Tan, Niandi Cui, Yi Wang, Jinhui Zhang, Mengyu Hu, Shixian Xiao, Yinglian |
author_sort | Chen, Songfeng |
collection | PubMed |
description | BACKGROUND: Achalasia is a primary esophageal motility disorder with potential molecular pathogenesis remaining uncertain. This study aimed to identify the differentially expressed proteins and potential pathways among achalasia subtypes and controls to further reveal the molecular pathogenesis of achalasia. METHODS: Paired lower esophageal sphincter (LES) muscle and serum samples from 24 achalasia patients were collected. We also collected 10 normal serum samples from healthy controls and 10 normal LES muscle samples from esophageal cancer patients. The 4D label-free proteomic analysis was performed to identify the potential proteins and pathways involved in achalasia. RESULTS: Analysis of Similarities showed distinct proteomic patterns of serum and muscle samples between achalasia patients and controls (both P < 0.05). Functional enrichment analysis suggested that these differentially expressed proteins were immunity-, infection-, inflammation-, and neurodegeneration-associated. The mfuzz analysis in LES specimens showed that proteins involved in the extracellular matrix–receptor interaction increased sequentially between the control group, type III, type II, and type I achalasia. Only 26 proteins altered in the same directions in serum and muscle samples. CONCLUSIONS: This first 4D label-free proteomic study of achalasia indicated that there were specific protein alterations in both the serum and muscle of achalasia, involving immunity, inflammation, infection, and neurodegeneration pathways. Distinct protein clusters between types I, II, and III revealed the potential molecular pathways associated with different disease stages. Analysis of proteins changed in both muscle and serum samples highlighted the importance of further studies on LES muscle and revealed potential autoantibodies. |
format | Online Article Text |
id | pubmed-10260389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102603892023-06-15 The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study Chen, Songfeng Xing, Xiangbin Hou, Xun Zhuang, Qianjun Tan, Niandi Cui, Yi Wang, Jinhui Zhang, Mengyu Hu, Shixian Xiao, Yinglian Gastroenterol Rep (Oxf) Original Article BACKGROUND: Achalasia is a primary esophageal motility disorder with potential molecular pathogenesis remaining uncertain. This study aimed to identify the differentially expressed proteins and potential pathways among achalasia subtypes and controls to further reveal the molecular pathogenesis of achalasia. METHODS: Paired lower esophageal sphincter (LES) muscle and serum samples from 24 achalasia patients were collected. We also collected 10 normal serum samples from healthy controls and 10 normal LES muscle samples from esophageal cancer patients. The 4D label-free proteomic analysis was performed to identify the potential proteins and pathways involved in achalasia. RESULTS: Analysis of Similarities showed distinct proteomic patterns of serum and muscle samples between achalasia patients and controls (both P < 0.05). Functional enrichment analysis suggested that these differentially expressed proteins were immunity-, infection-, inflammation-, and neurodegeneration-associated. The mfuzz analysis in LES specimens showed that proteins involved in the extracellular matrix–receptor interaction increased sequentially between the control group, type III, type II, and type I achalasia. Only 26 proteins altered in the same directions in serum and muscle samples. CONCLUSIONS: This first 4D label-free proteomic study of achalasia indicated that there were specific protein alterations in both the serum and muscle of achalasia, involving immunity, inflammation, infection, and neurodegeneration pathways. Distinct protein clusters between types I, II, and III revealed the potential molecular pathways associated with different disease stages. Analysis of proteins changed in both muscle and serum samples highlighted the importance of further studies on LES muscle and revealed potential autoantibodies. Oxford University Press 2023-06-12 /pmc/articles/PMC10260389/ /pubmed/37324545 http://dx.doi.org/10.1093/gastro/goad031 Text en © The Author(s) 2023. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-sen University https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Chen, Songfeng Xing, Xiangbin Hou, Xun Zhuang, Qianjun Tan, Niandi Cui, Yi Wang, Jinhui Zhang, Mengyu Hu, Shixian Xiao, Yinglian The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title | The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title_full | The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title_fullStr | The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title_full_unstemmed | The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title_short | The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study |
title_sort | molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4d label-free proteomic study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260389/ https://www.ncbi.nlm.nih.gov/pubmed/37324545 http://dx.doi.org/10.1093/gastro/goad031 |
work_keys_str_mv | AT chensongfeng themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT xingxiangbin themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT houxun themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT zhuangqianjun themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT tanniandi themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT cuiyi themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT wangjinhui themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT zhangmengyu themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT hushixian themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT xiaoyinglian themolecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT chensongfeng molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT xingxiangbin molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT houxun molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT zhuangqianjun molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT tanniandi molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT cuiyi molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT wangjinhui molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT zhangmengyu molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT hushixian molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy AT xiaoyinglian molecularpathogenesisofachalasiaapairedloweresophagealsphinctermuscleandserum4dlabelfreeproteomicstudy |