Cargando…
Factors affecting Hemoglobin A1c in the longitudinal study of the Iranian population using mixed quantile regression
Diabetes, a major non-communicable disease, presents challenges for healthcare systems worldwide. Traditional regression models focus on mean effects, but factors can impact the entire distribution of responses over time. Linear mixed quantile regression models (LQMMs) address this issue. A study in...
Autores principales: | Bahrampour, Abbas, Haji-Maghsoudi, Saiedeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260964/ https://www.ncbi.nlm.nih.gov/pubmed/37308493 http://dx.doi.org/10.1038/s41598-023-36481-x |
Ejemplares similares
-
Quantile Regression and its Key Role in Promoting Medical Research
por: MADADIZADEH, Farzan, et al.
Publicado: (2016) -
The Estimation of Active Social Network Size of the Iranian Population
por: Rastegari, Azam, et al.
Publicado: (2013) -
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
Generalized linear mixed quantile regression with panel data
por: Lu, Xiaoming, et al.
Publicado: (2020) -
Handbook of quantile regression
por: Koenker, Roger, et al.
Publicado: (2017)