Cargando…

Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential f...

Descripción completa

Detalles Bibliográficos
Autores principales: Moussaoui, Dihia, Robblee, James P., Robert-Paganin, Julien, Auguin, Daniel, Fisher, Fabio, Fagnant, Patricia M., Macfarlane, Jill E., Schaletzky, Julia, Wehri, Eddie, Mueller-Dieckmann, Christoph, Baum, Jake, Trybus, Kathleen M., Houdusse, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261046/
https://www.ncbi.nlm.nih.gov/pubmed/37308472
http://dx.doi.org/10.1038/s41467-023-38976-7
_version_ 1785057877779546112
author Moussaoui, Dihia
Robblee, James P.
Robert-Paganin, Julien
Auguin, Daniel
Fisher, Fabio
Fagnant, Patricia M.
Macfarlane, Jill E.
Schaletzky, Julia
Wehri, Eddie
Mueller-Dieckmann, Christoph
Baum, Jake
Trybus, Kathleen M.
Houdusse, Anne
author_facet Moussaoui, Dihia
Robblee, James P.
Robert-Paganin, Julien
Auguin, Daniel
Fisher, Fabio
Fagnant, Patricia M.
Macfarlane, Jill E.
Schaletzky, Julia
Wehri, Eddie
Mueller-Dieckmann, Christoph
Baum, Jake
Trybus, Kathleen M.
Houdusse, Anne
author_sort Moussaoui, Dihia
collection PubMed
description Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.
format Online
Article
Text
id pubmed-10261046
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102610462023-06-15 Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design Moussaoui, Dihia Robblee, James P. Robert-Paganin, Julien Auguin, Daniel Fisher, Fabio Fagnant, Patricia M. Macfarlane, Jill E. Schaletzky, Julia Wehri, Eddie Mueller-Dieckmann, Christoph Baum, Jake Trybus, Kathleen M. Houdusse, Anne Nat Commun Article Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments. Nature Publishing Group UK 2023-06-12 /pmc/articles/PMC10261046/ /pubmed/37308472 http://dx.doi.org/10.1038/s41467-023-38976-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Moussaoui, Dihia
Robblee, James P.
Robert-Paganin, Julien
Auguin, Daniel
Fisher, Fabio
Fagnant, Patricia M.
Macfarlane, Jill E.
Schaletzky, Julia
Wehri, Eddie
Mueller-Dieckmann, Christoph
Baum, Jake
Trybus, Kathleen M.
Houdusse, Anne
Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title_full Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title_fullStr Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title_full_unstemmed Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title_short Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
title_sort mechanism of small molecule inhibition of plasmodium falciparum myosin a informs antimalarial drug design
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261046/
https://www.ncbi.nlm.nih.gov/pubmed/37308472
http://dx.doi.org/10.1038/s41467-023-38976-7
work_keys_str_mv AT moussaouidihia mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT robbleejamesp mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT robertpaganinjulien mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT auguindaniel mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT fisherfabio mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT fagnantpatriciam mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT macfarlanejille mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT schaletzkyjulia mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT wehrieddie mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT muellerdieckmannchristoph mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT baumjake mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT trybuskathleenm mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign
AT houdusseanne mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign