Cargando…
Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential f...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261046/ https://www.ncbi.nlm.nih.gov/pubmed/37308472 http://dx.doi.org/10.1038/s41467-023-38976-7 |
_version_ | 1785057877779546112 |
---|---|
author | Moussaoui, Dihia Robblee, James P. Robert-Paganin, Julien Auguin, Daniel Fisher, Fabio Fagnant, Patricia M. Macfarlane, Jill E. Schaletzky, Julia Wehri, Eddie Mueller-Dieckmann, Christoph Baum, Jake Trybus, Kathleen M. Houdusse, Anne |
author_facet | Moussaoui, Dihia Robblee, James P. Robert-Paganin, Julien Auguin, Daniel Fisher, Fabio Fagnant, Patricia M. Macfarlane, Jill E. Schaletzky, Julia Wehri, Eddie Mueller-Dieckmann, Christoph Baum, Jake Trybus, Kathleen M. Houdusse, Anne |
author_sort | Moussaoui, Dihia |
collection | PubMed |
description | Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments. |
format | Online Article Text |
id | pubmed-10261046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102610462023-06-15 Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design Moussaoui, Dihia Robblee, James P. Robert-Paganin, Julien Auguin, Daniel Fisher, Fabio Fagnant, Patricia M. Macfarlane, Jill E. Schaletzky, Julia Wehri, Eddie Mueller-Dieckmann, Christoph Baum, Jake Trybus, Kathleen M. Houdusse, Anne Nat Commun Article Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments. Nature Publishing Group UK 2023-06-12 /pmc/articles/PMC10261046/ /pubmed/37308472 http://dx.doi.org/10.1038/s41467-023-38976-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Moussaoui, Dihia Robblee, James P. Robert-Paganin, Julien Auguin, Daniel Fisher, Fabio Fagnant, Patricia M. Macfarlane, Jill E. Schaletzky, Julia Wehri, Eddie Mueller-Dieckmann, Christoph Baum, Jake Trybus, Kathleen M. Houdusse, Anne Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title | Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title_full | Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title_fullStr | Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title_full_unstemmed | Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title_short | Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design |
title_sort | mechanism of small molecule inhibition of plasmodium falciparum myosin a informs antimalarial drug design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261046/ https://www.ncbi.nlm.nih.gov/pubmed/37308472 http://dx.doi.org/10.1038/s41467-023-38976-7 |
work_keys_str_mv | AT moussaouidihia mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT robbleejamesp mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT robertpaganinjulien mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT auguindaniel mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT fisherfabio mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT fagnantpatriciam mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT macfarlanejille mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT schaletzkyjulia mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT wehrieddie mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT muellerdieckmannchristoph mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT baumjake mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT trybuskathleenm mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign AT houdusseanne mechanismofsmallmoleculeinhibitionofplasmodiumfalciparummyosinainformsantimalarialdrugdesign |