Cargando…
NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images
The primary step in tissue cytometry is the automated distinction of individual cells (segmentation). Since cell borders are seldom labeled, cells are generally segmented by their nuclei. While tools have been developed for segmenting nuclei in two dimensions, segmentation of nuclei in three-dimensi...
Autores principales: | Wu, Liming, Chen, Alain, Salama, Paul, Winfree, Seth, Dunn, Kenneth W., Delp, Edward J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261124/ https://www.ncbi.nlm.nih.gov/pubmed/37308499 http://dx.doi.org/10.1038/s41598-023-36243-9 |
Ejemplares similares
-
DeepSynth: Three-dimensional nuclear segmentation of biological images using neural networks trained with synthetic data
por: Dunn, Kenneth W., et al.
Publicado: (2019) -
IMART software for correction of motion artifacts in images collected in intravital microscopy
por: Dunn, Kenneth W, et al.
Publicado: (2014) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Bayesian Particle Instance Segmentation for Electron
Microscopy Image Quantification
por: Yildirim, Batuhan, et al.
Publicado: (2021) -
Instance Sequence Queries for Video Instance Segmentation with Transformers
por: Xu, Zhujun, et al.
Publicado: (2021)