Cargando…
Machine learning boosts three-dimensional bioprinting
Three-dimensional (3D) bioprinting is a computer-controlled technology that combines biological factors and bioinks to print an accurate 3D structure in a layer- by-layer fashion. 3D bioprinting is a new tissue engineering technology based on rapid prototyping and additive manufacturing technology,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Whioce Publishing Pte. Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261168/ https://www.ncbi.nlm.nih.gov/pubmed/37323488 http://dx.doi.org/10.18063/ijb.739 |
_version_ | 1785057895616872448 |
---|---|
author | Ning, Hongwei Zhou, Teng Joo, Sang Woo |
author_facet | Ning, Hongwei Zhou, Teng Joo, Sang Woo |
author_sort | Ning, Hongwei |
collection | PubMed |
description | Three-dimensional (3D) bioprinting is a computer-controlled technology that combines biological factors and bioinks to print an accurate 3D structure in a layer- by-layer fashion. 3D bioprinting is a new tissue engineering technology based on rapid prototyping and additive manufacturing technology, combined with various disciplines. In addition to the problems in in vitro culture process, the bioprinting procedure is also afflicted with a few issues: (1) difficulty in looking for the appropriate bioink to match the printing parameters to reduce cell damage and mortality; and (2) difficulty in improving the printing accuracy in the printing process. Data- driven machine learning algorithms with powerful predictive capabilities have natural advantages in behavior prediction and new model exploration. Combining machine learning algorithms with 3D bioprinting helps to find more efficient bioinks, determine printing parameters, and detect defects in the printing process. This paper introduces several machine learning algorithms in detail, summarizes the role of machine learning in additive manufacturing applications, and reviews the research progress of the combination of 3D bioprinting and machine learning in recent years, especially the improvement of bioink generation, the optimization of printing parameter, and the detection of printing defect. |
format | Online Article Text |
id | pubmed-10261168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Whioce Publishing Pte. Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102611682023-06-15 Machine learning boosts three-dimensional bioprinting Ning, Hongwei Zhou, Teng Joo, Sang Woo Int J Bioprint Review Article Three-dimensional (3D) bioprinting is a computer-controlled technology that combines biological factors and bioinks to print an accurate 3D structure in a layer- by-layer fashion. 3D bioprinting is a new tissue engineering technology based on rapid prototyping and additive manufacturing technology, combined with various disciplines. In addition to the problems in in vitro culture process, the bioprinting procedure is also afflicted with a few issues: (1) difficulty in looking for the appropriate bioink to match the printing parameters to reduce cell damage and mortality; and (2) difficulty in improving the printing accuracy in the printing process. Data- driven machine learning algorithms with powerful predictive capabilities have natural advantages in behavior prediction and new model exploration. Combining machine learning algorithms with 3D bioprinting helps to find more efficient bioinks, determine printing parameters, and detect defects in the printing process. This paper introduces several machine learning algorithms in detail, summarizes the role of machine learning in additive manufacturing applications, and reviews the research progress of the combination of 3D bioprinting and machine learning in recent years, especially the improvement of bioink generation, the optimization of printing parameter, and the detection of printing defect. Whioce Publishing Pte. Ltd. 2023-04-27 /pmc/articles/PMC10261168/ /pubmed/37323488 http://dx.doi.org/10.18063/ijb.739 Text en Copyright:© 2023, Ning H, Zhou T, Joo SW https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, permitting distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Ning, Hongwei Zhou, Teng Joo, Sang Woo Machine learning boosts three-dimensional bioprinting |
title | Machine learning boosts three-dimensional bioprinting |
title_full | Machine learning boosts three-dimensional bioprinting |
title_fullStr | Machine learning boosts three-dimensional bioprinting |
title_full_unstemmed | Machine learning boosts three-dimensional bioprinting |
title_short | Machine learning boosts three-dimensional bioprinting |
title_sort | machine learning boosts three-dimensional bioprinting |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261168/ https://www.ncbi.nlm.nih.gov/pubmed/37323488 http://dx.doi.org/10.18063/ijb.739 |
work_keys_str_mv | AT ninghongwei machinelearningbooststhreedimensionalbioprinting AT zhouteng machinelearningbooststhreedimensionalbioprinting AT joosangwoo machinelearningbooststhreedimensionalbioprinting |