Cargando…
Biomechanics of the tether breakage: tensile behaviour of a single-unit vertebral body tethering construct
PURPOSE: Tether breakage was reported as the most common complication of vertebral body tethering. However, as the literature suggests the physiological loads do not have the potential to cause the failure of the tether. Currently, the biomechanical reason behind the tether breakage is unknown. The...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261170/ https://www.ncbi.nlm.nih.gov/pubmed/36763247 http://dx.doi.org/10.1007/s43390-023-00657-2 |
Sumario: | PURPOSE: Tether breakage was reported as the most common complication of vertebral body tethering. However, as the literature suggests the physiological loads do not have the potential to cause the failure of the tether. Currently, the biomechanical reason behind the tether breakage is unknown. The current study aims to elucidate the effects of the tension forces on the failure mechanisms of the VBT and provide mechanical justification for how it can be identified radiographically. METHODS: Tensile tests (20%/min strain rate) were performed on single-unit VBT samples. Failure modes and mechanical characteristics were reported. RESULTS: The failure took place prematurely due to the slippage of the tether at the screw–tether junction where the tether is damaged significantly by the locking cap. Slippage was initiated at 10–13% tensile strain level where the tensile stress and tension force were 50.4 ± 1.5 MPa and 582.2 ± 30.8 N, respectively. CONCLUSION: The failure occurs because of high-stress concentrations generated within the locking region which damages the tether surface and leads to the slippage of the tether. We observed that the loads leading to failure are within the physiological limits and may indicate the high likelihood of the tether breakage. The failure mode observed in our study is shown to be the dominant failure mode, and a design improvement on the gripping mechanism is suggested to avoid failure at the screw–tether junction. We observed that the tether elongates 10–13% prior to the breakage, which can be employed as a diagnostic criterion to screen for tether breakages radiographically. |
---|