Cargando…
Predicting the antigenic evolution of SARS-COV-2 with deep learning
The relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learn...
Autores principales: | Han, Wenkai, Chen, Ningning, Xu, Xinzhou, Sahil, Adil, Zhou, Juexiao, Li, Zhongxiao, Zhong, Huawen, Gao, Elva, Zhang, Ruochi, Wang, Yu, Sun, Shiwei, Cheung, Peter Pak-Hang, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261845/ https://www.ncbi.nlm.nih.gov/pubmed/37311849 http://dx.doi.org/10.1038/s41467-023-39199-6 |
Ejemplares similares
-
Applications of deep learning in understanding gene regulation
por: Li, Zhongxiao, et al.
Publicado: (2023) -
A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics
por: Li, Haoyang, et al.
Publicado: (2023) -
DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning
por: Li, Zhongxiao, et al.
Publicado: (2022) -
Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS
por: Zhou, Juexiao, et al.
Publicado: (2022) -
A unified method to revoke the private data of patients in intelligent healthcare with audit to forget
por: Zhou, Juexiao, et al.
Publicado: (2023)