Cargando…

Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion

Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme...

Descripción completa

Detalles Bibliográficos
Autores principales: Tompkins, Joshua, Lizhar, Elizabeth, Shokrani, Alireza, Wu, Xiwei, Berley, Jordan, Kamali, Diba, Hussey, Deborah, Cerneckis, Jonas, Kang, Tae Hyuk, Wang, Jinhui, Tsark, Walter, Zeng, Defu, Godatha, Swetha, Natarajan, Rama, Riggs, Arthur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261899/
https://www.ncbi.nlm.nih.gov/pubmed/37323577
http://dx.doi.org/10.1016/j.crmeth.2023.100465
_version_ 1785057968736174080
author Tompkins, Joshua
Lizhar, Elizabeth
Shokrani, Alireza
Wu, Xiwei
Berley, Jordan
Kamali, Diba
Hussey, Deborah
Cerneckis, Jonas
Kang, Tae Hyuk
Wang, Jinhui
Tsark, Walter
Zeng, Defu
Godatha, Swetha
Natarajan, Rama
Riggs, Arthur
author_facet Tompkins, Joshua
Lizhar, Elizabeth
Shokrani, Alireza
Wu, Xiwei
Berley, Jordan
Kamali, Diba
Hussey, Deborah
Cerneckis, Jonas
Kang, Tae Hyuk
Wang, Jinhui
Tsark, Walter
Zeng, Defu
Godatha, Swetha
Natarajan, Rama
Riggs, Arthur
author_sort Tompkins, Joshua
collection PubMed
description Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease.
format Online
Article
Text
id pubmed-10261899
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102618992023-06-15 Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion Tompkins, Joshua Lizhar, Elizabeth Shokrani, Alireza Wu, Xiwei Berley, Jordan Kamali, Diba Hussey, Deborah Cerneckis, Jonas Kang, Tae Hyuk Wang, Jinhui Tsark, Walter Zeng, Defu Godatha, Swetha Natarajan, Rama Riggs, Arthur Cell Rep Methods Report Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease. Elsevier 2023-05-04 /pmc/articles/PMC10261899/ /pubmed/37323577 http://dx.doi.org/10.1016/j.crmeth.2023.100465 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Tompkins, Joshua
Lizhar, Elizabeth
Shokrani, Alireza
Wu, Xiwei
Berley, Jordan
Kamali, Diba
Hussey, Deborah
Cerneckis, Jonas
Kang, Tae Hyuk
Wang, Jinhui
Tsark, Walter
Zeng, Defu
Godatha, Swetha
Natarajan, Rama
Riggs, Arthur
Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title_full Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title_fullStr Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title_full_unstemmed Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title_short Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion
title_sort engineering cpg island dna methylation in pluripotent cells through synthetic cpg-free ssdna insertion
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10261899/
https://www.ncbi.nlm.nih.gov/pubmed/37323577
http://dx.doi.org/10.1016/j.crmeth.2023.100465
work_keys_str_mv AT tompkinsjoshua engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT lizharelizabeth engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT shokranialireza engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT wuxiwei engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT berleyjordan engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT kamalidiba engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT husseydeborah engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT cerneckisjonas engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT kangtaehyuk engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT wangjinhui engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT tsarkwalter engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT zengdefu engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT godathaswetha engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT natarajanrama engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion
AT riggsarthur engineeringcpgislanddnamethylationinpluripotentcellsthroughsyntheticcpgfreessdnainsertion