Cargando…
Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
[Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262153/ https://www.ncbi.nlm.nih.gov/pubmed/37325012 http://dx.doi.org/10.1021/acsanm.3c01249 |
_version_ | 1785058012922118144 |
---|---|
author | Jonker, Dirk Srivastava, Ketki Lafuente, Marta Susarrey-Arce, Arturo van der Stam, Ward van den Berg, Albert Odijk, Mathieu Gardeniers, Han J.G.E |
author_facet | Jonker, Dirk Srivastava, Ketki Lafuente, Marta Susarrey-Arce, Arturo van der Stam, Ward van den Berg, Albert Odijk, Mathieu Gardeniers, Han J.G.E |
author_sort | Jonker, Dirk |
collection | PubMed |
description | [Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 10(7) (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications. |
format | Online Article Text |
id | pubmed-10262153 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102621532023-06-15 Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones Jonker, Dirk Srivastava, Ketki Lafuente, Marta Susarrey-Arce, Arturo van der Stam, Ward van den Berg, Albert Odijk, Mathieu Gardeniers, Han J.G.E ACS Appl Nano Mater [Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 10(7) (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications. American Chemical Society 2023-05-20 /pmc/articles/PMC10262153/ /pubmed/37325012 http://dx.doi.org/10.1021/acsanm.3c01249 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Jonker, Dirk Srivastava, Ketki Lafuente, Marta Susarrey-Arce, Arturo van der Stam, Ward van den Berg, Albert Odijk, Mathieu Gardeniers, Han J.G.E Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones |
title | Low-Variance Surface-Enhanced
Raman Spectroscopy Using
Confined Gold Nanoparticles over Silicon Nanocones |
title_full | Low-Variance Surface-Enhanced
Raman Spectroscopy Using
Confined Gold Nanoparticles over Silicon Nanocones |
title_fullStr | Low-Variance Surface-Enhanced
Raman Spectroscopy Using
Confined Gold Nanoparticles over Silicon Nanocones |
title_full_unstemmed | Low-Variance Surface-Enhanced
Raman Spectroscopy Using
Confined Gold Nanoparticles over Silicon Nanocones |
title_short | Low-Variance Surface-Enhanced
Raman Spectroscopy Using
Confined Gold Nanoparticles over Silicon Nanocones |
title_sort | low-variance surface-enhanced
raman spectroscopy using
confined gold nanoparticles over silicon nanocones |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262153/ https://www.ncbi.nlm.nih.gov/pubmed/37325012 http://dx.doi.org/10.1021/acsanm.3c01249 |
work_keys_str_mv | AT jonkerdirk lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT srivastavaketki lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT lafuentemarta lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT susarreyarcearturo lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT vanderstamward lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT vandenbergalbert lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT odijkmathieu lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones AT gardeniershanjge lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones |