Cargando…

Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones

[Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jonker, Dirk, Srivastava, Ketki, Lafuente, Marta, Susarrey-Arce, Arturo, van der Stam, Ward, van den Berg, Albert, Odijk, Mathieu, Gardeniers, Han J.G.E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262153/
https://www.ncbi.nlm.nih.gov/pubmed/37325012
http://dx.doi.org/10.1021/acsanm.3c01249
_version_ 1785058012922118144
author Jonker, Dirk
Srivastava, Ketki
Lafuente, Marta
Susarrey-Arce, Arturo
van der Stam, Ward
van den Berg, Albert
Odijk, Mathieu
Gardeniers, Han J.G.E
author_facet Jonker, Dirk
Srivastava, Ketki
Lafuente, Marta
Susarrey-Arce, Arturo
van der Stam, Ward
van den Berg, Albert
Odijk, Mathieu
Gardeniers, Han J.G.E
author_sort Jonker, Dirk
collection PubMed
description [Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 10(7) (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications.
format Online
Article
Text
id pubmed-10262153
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-102621532023-06-15 Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones Jonker, Dirk Srivastava, Ketki Lafuente, Marta Susarrey-Arce, Arturo van der Stam, Ward van den Berg, Albert Odijk, Mathieu Gardeniers, Han J.G.E ACS Appl Nano Mater [Image: see text] Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 10(7) (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications. American Chemical Society 2023-05-20 /pmc/articles/PMC10262153/ /pubmed/37325012 http://dx.doi.org/10.1021/acsanm.3c01249 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Jonker, Dirk
Srivastava, Ketki
Lafuente, Marta
Susarrey-Arce, Arturo
van der Stam, Ward
van den Berg, Albert
Odijk, Mathieu
Gardeniers, Han J.G.E
Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title_full Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title_fullStr Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title_full_unstemmed Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title_short Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones
title_sort low-variance surface-enhanced raman spectroscopy using confined gold nanoparticles over silicon nanocones
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262153/
https://www.ncbi.nlm.nih.gov/pubmed/37325012
http://dx.doi.org/10.1021/acsanm.3c01249
work_keys_str_mv AT jonkerdirk lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT srivastavaketki lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT lafuentemarta lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT susarreyarcearturo lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT vanderstamward lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT vandenbergalbert lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT odijkmathieu lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones
AT gardeniershanjge lowvariancesurfaceenhancedramanspectroscopyusingconfinedgoldnanoparticlesoversiliconnanocones