Cargando…
Omixer: multivariate and reproducible sample randomization to proactively counter batch effects in omics studies
MOTIVATION: Batch effects heavily impact results in omics studies, causing bias and false positive results, but software to control them preemptively is lacking. Sample randomization prior to measurement is vital for minimizing these effects, but current approaches are often ad hoc, poorly documente...
Autores principales: | Sinke, Lucy, Cats, Davy, Heijmans, Bastiaan T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262301/ https://www.ncbi.nlm.nih.gov/pubmed/33693546 http://dx.doi.org/10.1093/bioinformatics/btab159 |
Ejemplares similares
-
BatchQC: interactive software for evaluating sample and batch effects in genomic data
por: Manimaran, Solaiappan, et al.
Publicado: (2016) -
pyGenomeTracks: reproducible plots for multivariate genomic datasets
por: Lopez-Delisle, Lucille, et al.
Publicado: (2020) -
MultiBaC: an R package to remove batch effects in multi-omic experiments
por: Ugidos, Manuel, et al.
Publicado: (2022) -
Omics Notebook: robust, reproducible and flexible automated multiomics exploratory analysis and reporting
por: Blum, Benjamin C, et al.
Publicado: (2021) -
BBKNN: fast batch alignment of single cell transcriptomes
por: Polański, Krzysztof, et al.
Publicado: (2019)