Cargando…
Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears
BACKGROUND: Accurately diagnosing supraspinatus tears based on magnetic resonance imaging (MRI) is challenging and time-combusting due to the experience level variability of the musculoskeletal radiologists and orthopedic surgeons. We developed a deep learning-based model for automatically diagnosin...
Autores principales: | Guo, Deming, Liu, Xiaoning, Wang, Dawei, Tang, Xiongfeng, Qin, Yanguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262398/ https://www.ncbi.nlm.nih.gov/pubmed/37308995 http://dx.doi.org/10.1186/s13018-023-03909-z |
Ejemplares similares
-
Automated detection of knee cystic lesions on magnetic resonance imaging using deep learning
por: Xiongfeng, Tang, et al.
Publicado: (2022) -
Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model
por: Tang, Xiongfeng, et al.
Publicado: (2022) -
The accuracy of “subacromial grind test” in diagnosis of supraspinatus rotator cuff tears
por: Sawalha, Seif, et al.
Publicado: (2015) -
One Novel Phantom-Less Quantitative Computed Tomography System for Auto-Diagnosis of Osteoporosis Utilizes Low-Dose Chest Computed Tomography Obtained for COVID-19 Screening
por: Xiongfeng, Tang, et al.
Publicado: (2022) -
Erratum: The accuracy of “subacromial grind test” in diagnosis of supraspinatus rotator cuff tears
Publicado: (2016)