Cargando…

LYECs: lysosome-enhancing compounds as potential therapeutic approaches for Alzheimer disease

More than 55 million people are suffering from Alzheimer's disease (AD), but there is still no effective treatment for it. Therefore, novel therapeutic approaches and regulatory mechanisms of protein quality control need to be further evaluated and dissected. The lysosome is one of the major de...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Limin, Zhou, Yu, Liu, Hong, Li, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262797/
https://www.ncbi.nlm.nih.gov/pubmed/36215390
http://dx.doi.org/10.1080/15548627.2022.2131247
Descripción
Sumario:More than 55 million people are suffering from Alzheimer's disease (AD), but there is still no effective treatment for it. Therefore, novel therapeutic approaches and regulatory mechanisms of protein quality control need to be further evaluated and dissected. The lysosome is one of the major degradative organelles that maintain cellular homeostasis and protein quality control. In our recent study, we have identified a group of LYsosome-Enhancing Compounds (LYECs), which significantly promote the activation of TFEB (transcription factor EB) and lysosome biogenesis via inhibiting dopamine transporters (DAT). Injection of LH2-051, a member of the LYECs identified in this study, significantly improves learning, memory, and cognitive function of APP-PSEN1 mice, in which the enhanced capability of lysosomal degradation promotes the clearance of amyloid protein aggregates. In summary, this study reports novel mechanisms of neurotransporter-mediated lysosome biogenesis and shows that DAT inhibition can alleviate the pathogenesis of Alzheimer's disease.