Cargando…
Sequential adaptive strategies for sampling rare clustered populations
A new class of sampling strategies is proposed that can be applied to population-based surveys targeting a rare trait that is unevenly spread over an area of interest. Our proposal is characterised by the ability to tailor the data collection to specific features and challenges of the survey at hand...
Autores principales: | Mecatti, Fulvia, Sismanidis, Charalambos, Furfaro, Emanuela, Conti, Pier Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262937/ https://www.ncbi.nlm.nih.gov/pubmed/37360255 http://dx.doi.org/10.1007/s10260-023-00707-z |
Ejemplares similares
-
Contributions to sampling statistics
por: Mecatti, Fulvia, et al.
Publicado: (2014) -
Analysis of tuberculosis prevalence surveys: new guidance on best-practice methods
por: Floyd, Sian, et al.
Publicado: (2013) -
Adaptive list sequential sampling method for population-based observational studies
por: Hof, Michel H, et al.
Publicado: (2014) -
Adaptive Sampling Designs: Inference for Sparse and Clustered Populations
por: Seber, George A F, et al.
Publicado: (2013) -
Adaptive two-stage inverse sampling design to estimate density, abundance, and occupancy of rare and clustered populations
por: Salehi, Mohammad, et al.
Publicado: (2021)