Cargando…
Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions
Formation of membraneless organelles or biological condensates via phase separation and related processes hugely expands the cellular organelle repertoire. Biological condensates are dense and viscoelastic soft matters instead of canonical dilute solutions. To date, numerous different biological con...
Autores principales: | Shen, Zeyu, Jia, Bowen, Xu, Yang, Wessén, Jonas, Pal, Tanmoy, Chan, Hue Sun, Du, Shengwang, Zhang, Mingjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264073/ https://www.ncbi.nlm.nih.gov/pubmed/37261897 http://dx.doi.org/10.7554/eLife.81907 |
Ejemplares similares
-
The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere
por: Fisher, Gemma LM, et al.
Publicado: (2017) -
The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells
por: Russell, Charles M, et al.
Publicado: (2022) -
Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein
por: Goluguri, Rama Reddy, et al.
Publicado: (2019) -
Kinesin and dynein use distinct mechanisms to bypass obstacles
por: Ferro, Luke S, et al.
Publicado: (2019) -
Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION
por: Nakane, Takanori, et al.
Publicado: (2018)