Cargando…
Planar cell polarity: intracellular asymmetry and supracellular gradients of Frizzled
Planar cell polarity (PCP), the coordinated orientation of structures such as cilia, mammalian hairs or insect bristles, depends on at least two molecular systems. We have argued that these two systems use similar mechanisms; each depending on a supracellular gradient of concentration that spans a f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264100/ https://www.ncbi.nlm.nih.gov/pubmed/37311537 http://dx.doi.org/10.1098/rsob.230105 |
Sumario: | Planar cell polarity (PCP), the coordinated orientation of structures such as cilia, mammalian hairs or insect bristles, depends on at least two molecular systems. We have argued that these two systems use similar mechanisms; each depending on a supracellular gradient of concentration that spans a field of cells. In a linked paper, we studied the Dachsous/Fat system. We found a graded distribution of Dachsous in vivo in a segment of the pupal epidermis in the abdomen of Drosophila. Here we report a similar study of the key molecule for the Starry Night/Frizzled or ‘core’ system. We measure the distribution of the receptor Frizzled on the cell membranes of all cells of one segment in the living pupal abdomen of Drosophila. We find a supracellular gradient that falls about 17% in concentration from the front to the rear of the segment. We present some evidence that the gradient then resets in the most anterior cells of the next segment back. We find an intracellular asymmetry in all the cells, the posterior membrane of each cell carrying about 22% more Frizzled than the anterior membrane. These direct molecular measurements add to earlier evidence that the two systems of PCP act independently. |
---|