Cargando…
Spectral Decomposition of Discrepancy Kernels on the Euclidean Ball, the Special Orthogonal Group, and the Grassmannian Manifold
To numerically approximate Borel probability measures by finite atomic measures, we study the spectral decomposition of discrepancy kernels when restricted to compact subsets of [Formula: see text] . For restrictions to the Euclidean ball in odd dimensions, to the rotation group [Formula: see text]...
Autores principales: | Dick, Josef, Ehler, Martin, Gräf, Manuel, Krattenthaler, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264311/ https://www.ncbi.nlm.nih.gov/pubmed/37323829 http://dx.doi.org/10.1007/s00365-023-09638-0 |
Ejemplares similares
-
Quantum cohomology of Lagrangian and orthogonal Grassmannians
por: Tamvakis, H
Publicado: (2001) -
Euclidean quantum gravity on manifolds with boundary
por: Esposito, Giampiero, et al.
Publicado: (1997) -
The Multi-Cover Persistence of Euclidean Balls
por: Edelsbrunner, Herbert, et al.
Publicado: (2021) -
Isometric embedding of Riemannian manifolds in Euclidean spaces
por: Han, Qing, et al.
Publicado: (2014) -
Model Predictive Regulation on Manifolds in Euclidean Space
por: Phogat, Karmvir Singh, et al.
Publicado: (2022)