Cargando…

A generalizable deep learning regression model for automated glaucoma screening from fundus images

A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Hemelings, Ruben, Elen, Bart, Schuster, Alexander K., Blaschko, Matthew B., Barbosa-Breda, João, Hujanen, Pekko, Junglas, Annika, Nickels, Stefan, White, Andrew, Pfeiffer, Norbert, Mitchell, Paul, De Boever, Patrick, Tuulonen, Anja, Stalmans, Ingeborg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264390/
https://www.ncbi.nlm.nih.gov/pubmed/37311940
http://dx.doi.org/10.1038/s41746-023-00857-0
_version_ 1785058312681684992
author Hemelings, Ruben
Elen, Bart
Schuster, Alexander K.
Blaschko, Matthew B.
Barbosa-Breda, João
Hujanen, Pekko
Junglas, Annika
Nickels, Stefan
White, Andrew
Pfeiffer, Norbert
Mitchell, Paul
De Boever, Patrick
Tuulonen, Anja
Stalmans, Ingeborg
author_facet Hemelings, Ruben
Elen, Bart
Schuster, Alexander K.
Blaschko, Matthew B.
Barbosa-Breda, João
Hujanen, Pekko
Junglas, Annika
Nickels, Stefan
White, Andrew
Pfeiffer, Norbert
Mitchell, Paul
De Boever, Patrick
Tuulonen, Anja
Stalmans, Ingeborg
author_sort Hemelings, Ruben
collection PubMed
description A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted.
format Online
Article
Text
id pubmed-10264390
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102643902023-06-15 A generalizable deep learning regression model for automated glaucoma screening from fundus images Hemelings, Ruben Elen, Bart Schuster, Alexander K. Blaschko, Matthew B. Barbosa-Breda, João Hujanen, Pekko Junglas, Annika Nickels, Stefan White, Andrew Pfeiffer, Norbert Mitchell, Paul De Boever, Patrick Tuulonen, Anja Stalmans, Ingeborg NPJ Digit Med Article A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted. Nature Publishing Group UK 2023-06-13 /pmc/articles/PMC10264390/ /pubmed/37311940 http://dx.doi.org/10.1038/s41746-023-00857-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hemelings, Ruben
Elen, Bart
Schuster, Alexander K.
Blaschko, Matthew B.
Barbosa-Breda, João
Hujanen, Pekko
Junglas, Annika
Nickels, Stefan
White, Andrew
Pfeiffer, Norbert
Mitchell, Paul
De Boever, Patrick
Tuulonen, Anja
Stalmans, Ingeborg
A generalizable deep learning regression model for automated glaucoma screening from fundus images
title A generalizable deep learning regression model for automated glaucoma screening from fundus images
title_full A generalizable deep learning regression model for automated glaucoma screening from fundus images
title_fullStr A generalizable deep learning regression model for automated glaucoma screening from fundus images
title_full_unstemmed A generalizable deep learning regression model for automated glaucoma screening from fundus images
title_short A generalizable deep learning regression model for automated glaucoma screening from fundus images
title_sort generalizable deep learning regression model for automated glaucoma screening from fundus images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264390/
https://www.ncbi.nlm.nih.gov/pubmed/37311940
http://dx.doi.org/10.1038/s41746-023-00857-0
work_keys_str_mv AT hemelingsruben ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT elenbart ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT schusteralexanderk ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT blaschkomatthewb ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT barbosabredajoao ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT hujanenpekko ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT junglasannika ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT nickelsstefan ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT whiteandrew ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT pfeiffernorbert ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT mitchellpaul ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT deboeverpatrick ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT tuulonenanja ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT stalmansingeborg ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT hemelingsruben generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT elenbart generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT schusteralexanderk generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT blaschkomatthewb generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT barbosabredajoao generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT hujanenpekko generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT junglasannika generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT nickelsstefan generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT whiteandrew generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT pfeiffernorbert generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT mitchellpaul generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT deboeverpatrick generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT tuulonenanja generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages
AT stalmansingeborg generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages