Cargando…
A generalizable deep learning regression model for automated glaucoma screening from fundus images
A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This perfor...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264390/ https://www.ncbi.nlm.nih.gov/pubmed/37311940 http://dx.doi.org/10.1038/s41746-023-00857-0 |
_version_ | 1785058312681684992 |
---|---|
author | Hemelings, Ruben Elen, Bart Schuster, Alexander K. Blaschko, Matthew B. Barbosa-Breda, João Hujanen, Pekko Junglas, Annika Nickels, Stefan White, Andrew Pfeiffer, Norbert Mitchell, Paul De Boever, Patrick Tuulonen, Anja Stalmans, Ingeborg |
author_facet | Hemelings, Ruben Elen, Bart Schuster, Alexander K. Blaschko, Matthew B. Barbosa-Breda, João Hujanen, Pekko Junglas, Annika Nickels, Stefan White, Andrew Pfeiffer, Norbert Mitchell, Paul De Boever, Patrick Tuulonen, Anja Stalmans, Ingeborg |
author_sort | Hemelings, Ruben |
collection | PubMed |
description | A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted. |
format | Online Article Text |
id | pubmed-10264390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102643902023-06-15 A generalizable deep learning regression model for automated glaucoma screening from fundus images Hemelings, Ruben Elen, Bart Schuster, Alexander K. Blaschko, Matthew B. Barbosa-Breda, João Hujanen, Pekko Junglas, Annika Nickels, Stefan White, Andrew Pfeiffer, Norbert Mitchell, Paul De Boever, Patrick Tuulonen, Anja Stalmans, Ingeborg NPJ Digit Med Article A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted. Nature Publishing Group UK 2023-06-13 /pmc/articles/PMC10264390/ /pubmed/37311940 http://dx.doi.org/10.1038/s41746-023-00857-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hemelings, Ruben Elen, Bart Schuster, Alexander K. Blaschko, Matthew B. Barbosa-Breda, João Hujanen, Pekko Junglas, Annika Nickels, Stefan White, Andrew Pfeiffer, Norbert Mitchell, Paul De Boever, Patrick Tuulonen, Anja Stalmans, Ingeborg A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_full | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_fullStr | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_full_unstemmed | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_short | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_sort | generalizable deep learning regression model for automated glaucoma screening from fundus images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264390/ https://www.ncbi.nlm.nih.gov/pubmed/37311940 http://dx.doi.org/10.1038/s41746-023-00857-0 |
work_keys_str_mv | AT hemelingsruben ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT elenbart ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT schusteralexanderk ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT blaschkomatthewb ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT barbosabredajoao ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT hujanenpekko ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT junglasannika ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT nickelsstefan ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT whiteandrew ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT pfeiffernorbert ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT mitchellpaul ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT deboeverpatrick ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT tuulonenanja ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT stalmansingeborg ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT hemelingsruben generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT elenbart generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT schusteralexanderk generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT blaschkomatthewb generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT barbosabredajoao generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT hujanenpekko generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT junglasannika generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT nickelsstefan generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT whiteandrew generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT pfeiffernorbert generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT mitchellpaul generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT deboeverpatrick generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT tuulonenanja generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT stalmansingeborg generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages |