Cargando…
Bimodal electroencephalography-functional magnetic resonance imaging dataset for inner-speech recognition
The recognition of inner speech, which could give a ‘voice’ to patients that have no ability to speak or move, is a challenge for brain-computer interfaces (BCIs). A shortcoming of the available datasets is that they do not combine modalities to increase the performance of inner speech recognition....
Autores principales: | Simistira Liwicki, Foteini, Gupta, Vibha, Saini, Rajkumar, De, Kanjar, Abid, Nosheen, Rakesh, Sumit, Wellington, Scott, Wilson, Holly, Liwicki, Marcus, Eriksson, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264396/ https://www.ncbi.nlm.nih.gov/pubmed/37311807 http://dx.doi.org/10.1038/s41597-023-02286-w |
Ejemplares similares
-
Dataset of Speech Production in intracranial Electroencephalography
por: Verwoert, Maxime, et al.
Publicado: (2022) -
Thinking out loud, an open-access EEG-based BCI dataset for inner speech recognition
por: Nieto, Nicolás, et al.
Publicado: (2022) -
A simultaneous electroencephalography and eye-tracking dataset in elite athletes during alertness and concentration tasks
por: Pei, Xinzhen, et al.
Publicado: (2022) -
A multiscale imaging and modelling dataset of the human inner ear
por: Gerber, Nicolas, et al.
Publicado: (2017) -
A multimodal dataset of spontaneous speech and movement production on object affordances
por: Vatakis, Argiro, et al.
Publicado: (2016)