Cargando…

Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain

With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yun, Miller, Jeremy A., Park, Jeongbin, Lelieveldt, Boudewijn P., Long, Brian, Abdelaal, Tamim, Aevermann, Brian D., Biancalani, Tommaso, Comiter, Charles, Dzyubachyk, Oleh, Eggermont, Jeroen, Langseth, Christoffer Mattsson, Petukhov, Viktor, Scalia, Gabriele, Vaishnav, Eeshit Dhaval, Zhao, Yilin, Lein, Ed S., Scheuermann, Richard H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264402/
https://www.ncbi.nlm.nih.gov/pubmed/37311768
http://dx.doi.org/10.1038/s41598-023-36638-8
_version_ 1785058315261181952
author Zhang, Yun
Miller, Jeremy A.
Park, Jeongbin
Lelieveldt, Boudewijn P.
Long, Brian
Abdelaal, Tamim
Aevermann, Brian D.
Biancalani, Tommaso
Comiter, Charles
Dzyubachyk, Oleh
Eggermont, Jeroen
Langseth, Christoffer Mattsson
Petukhov, Viktor
Scalia, Gabriele
Vaishnav, Eeshit Dhaval
Zhao, Yilin
Lein, Ed S.
Scheuermann, Richard H.
author_facet Zhang, Yun
Miller, Jeremy A.
Park, Jeongbin
Lelieveldt, Boudewijn P.
Long, Brian
Abdelaal, Tamim
Aevermann, Brian D.
Biancalani, Tommaso
Comiter, Charles
Dzyubachyk, Oleh
Eggermont, Jeroen
Langseth, Christoffer Mattsson
Petukhov, Viktor
Scalia, Gabriele
Vaishnav, Eeshit Dhaval
Zhao, Yilin
Lein, Ed S.
Scheuermann, Richard H.
author_sort Zhang, Yun
collection PubMed
description With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment.
format Online
Article
Text
id pubmed-10264402
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102644022023-06-15 Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain Zhang, Yun Miller, Jeremy A. Park, Jeongbin Lelieveldt, Boudewijn P. Long, Brian Abdelaal, Tamim Aevermann, Brian D. Biancalani, Tommaso Comiter, Charles Dzyubachyk, Oleh Eggermont, Jeroen Langseth, Christoffer Mattsson Petukhov, Viktor Scalia, Gabriele Vaishnav, Eeshit Dhaval Zhao, Yilin Lein, Ed S. Scheuermann, Richard H. Sci Rep Article With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment. Nature Publishing Group UK 2023-06-13 /pmc/articles/PMC10264402/ /pubmed/37311768 http://dx.doi.org/10.1038/s41598-023-36638-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhang, Yun
Miller, Jeremy A.
Park, Jeongbin
Lelieveldt, Boudewijn P.
Long, Brian
Abdelaal, Tamim
Aevermann, Brian D.
Biancalani, Tommaso
Comiter, Charles
Dzyubachyk, Oleh
Eggermont, Jeroen
Langseth, Christoffer Mattsson
Petukhov, Viktor
Scalia, Gabriele
Vaishnav, Eeshit Dhaval
Zhao, Yilin
Lein, Ed S.
Scheuermann, Richard H.
Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title_full Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title_fullStr Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title_full_unstemmed Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title_short Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
title_sort reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264402/
https://www.ncbi.nlm.nih.gov/pubmed/37311768
http://dx.doi.org/10.1038/s41598-023-36638-8
work_keys_str_mv AT zhangyun referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT millerjeremya referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT parkjeongbin referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT lelieveldtboudewijnp referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT longbrian referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT abdelaaltamim referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT aevermannbriand referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT biancalanitommaso referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT comitercharles referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT dzyubachykoleh referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT eggermontjeroen referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT langsethchristoffermattsson referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT petukhovviktor referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT scaliagabriele referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT vaishnaveeshitdhaval referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT zhaoyilin referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT leineds referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain
AT scheuermannrichardh referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain