Cargando…
Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264402/ https://www.ncbi.nlm.nih.gov/pubmed/37311768 http://dx.doi.org/10.1038/s41598-023-36638-8 |
_version_ | 1785058315261181952 |
---|---|
author | Zhang, Yun Miller, Jeremy A. Park, Jeongbin Lelieveldt, Boudewijn P. Long, Brian Abdelaal, Tamim Aevermann, Brian D. Biancalani, Tommaso Comiter, Charles Dzyubachyk, Oleh Eggermont, Jeroen Langseth, Christoffer Mattsson Petukhov, Viktor Scalia, Gabriele Vaishnav, Eeshit Dhaval Zhao, Yilin Lein, Ed S. Scheuermann, Richard H. |
author_facet | Zhang, Yun Miller, Jeremy A. Park, Jeongbin Lelieveldt, Boudewijn P. Long, Brian Abdelaal, Tamim Aevermann, Brian D. Biancalani, Tommaso Comiter, Charles Dzyubachyk, Oleh Eggermont, Jeroen Langseth, Christoffer Mattsson Petukhov, Viktor Scalia, Gabriele Vaishnav, Eeshit Dhaval Zhao, Yilin Lein, Ed S. Scheuermann, Richard H. |
author_sort | Zhang, Yun |
collection | PubMed |
description | With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment. |
format | Online Article Text |
id | pubmed-10264402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102644022023-06-15 Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain Zhang, Yun Miller, Jeremy A. Park, Jeongbin Lelieveldt, Boudewijn P. Long, Brian Abdelaal, Tamim Aevermann, Brian D. Biancalani, Tommaso Comiter, Charles Dzyubachyk, Oleh Eggermont, Jeroen Langseth, Christoffer Mattsson Petukhov, Viktor Scalia, Gabriele Vaishnav, Eeshit Dhaval Zhao, Yilin Lein, Ed S. Scheuermann, Richard H. Sci Rep Article With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment. Nature Publishing Group UK 2023-06-13 /pmc/articles/PMC10264402/ /pubmed/37311768 http://dx.doi.org/10.1038/s41598-023-36638-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhang, Yun Miller, Jeremy A. Park, Jeongbin Lelieveldt, Boudewijn P. Long, Brian Abdelaal, Tamim Aevermann, Brian D. Biancalani, Tommaso Comiter, Charles Dzyubachyk, Oleh Eggermont, Jeroen Langseth, Christoffer Mattsson Petukhov, Viktor Scalia, Gabriele Vaishnav, Eeshit Dhaval Zhao, Yilin Lein, Ed S. Scheuermann, Richard H. Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title | Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title_full | Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title_fullStr | Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title_full_unstemmed | Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title_short | Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
title_sort | reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264402/ https://www.ncbi.nlm.nih.gov/pubmed/37311768 http://dx.doi.org/10.1038/s41598-023-36638-8 |
work_keys_str_mv | AT zhangyun referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT millerjeremya referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT parkjeongbin referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT lelieveldtboudewijnp referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT longbrian referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT abdelaaltamim referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT aevermannbriand referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT biancalanitommaso referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT comitercharles referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT dzyubachykoleh referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT eggermontjeroen referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT langsethchristoffermattsson referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT petukhovviktor referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT scaliagabriele referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT vaishnaveeshitdhaval referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT zhaoyilin referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT leineds referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain AT scheuermannrichardh referencebasedcelltypematchingofinsituimagebasedspatialtranscriptomicsdataonprimaryvisualcortexofmousebrain |