Cargando…

Simulations of Amyloid-Forming Peptides in the Crystal State

There still is little treatment available for amyloid diseases, despite their significant impact on individuals and the social and economic implications for society. One reason for this is that the physical nature of amyloid formation is not understood sufficiently well. Therefore, fundamental resea...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosseini, A. Najla, van der Spoel, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264543/
https://www.ncbi.nlm.nih.gov/pubmed/37145206
http://dx.doi.org/10.1007/s10930-023-10119-3
Descripción
Sumario:There still is little treatment available for amyloid diseases, despite their significant impact on individuals and the social and economic implications for society. One reason for this is that the physical nature of amyloid formation is not understood sufficiently well. Therefore, fundamental research at the molecular level remains necessary to support the development of therapeutics. A few structures of short peptides from amyloid-forming proteins have been determined. These can in principle be used as scaffolds for designing aggregation inhibitors. Attempts to this end have often used the tools of computational chemistry, in particular molecular simulation. However, few simulation studies of these peptides in the crystal state have been presented so far. Hence, to validate the capability of common force fields (AMBER19SB, CHARMM36m, and OPLS-AA/M) to yield insight into the dynamics and structural stability of amyloid peptide aggregates, we have performed molecular dynamics simulations of twelve different peptide crystals at two different temperatures. From the simulations, we evaluate the hydrogen bonding patterns, the isotropic B-factors, the change in energy, the Ramachandran plots, and the unit cell parameters and compare the results with the crystal structures. Most crystals are stable in the simulations but for all force fields there is at least one that deviates from the experimental crystal, suggesting more work is needed on these models. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10930-023-10119-3.