Cargando…
Topological arrangement of coronal segments in human callosal fibers in vivo tractography
The topography of human callosal fibers in the midsagittal corpus callosum (mid-CC), in terms of cortical termination, is inconsistent in the literature. Despite being a high-profile and controversial topic, heterotopic callosal bundles (HeCBs) have not been studied from a whole-brain perspective. H...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264571/ https://www.ncbi.nlm.nih.gov/pubmed/37325424 http://dx.doi.org/10.3389/fnana.2023.1097247 |
_version_ | 1785058350379040768 |
---|---|
author | Zhang, Hui Feng, Yuan Li, Weiguang Liang, Xili Huang, Guanglong Qi, Songtao |
author_facet | Zhang, Hui Feng, Yuan Li, Weiguang Liang, Xili Huang, Guanglong Qi, Songtao |
author_sort | Zhang, Hui |
collection | PubMed |
description | The topography of human callosal fibers in the midsagittal corpus callosum (mid-CC), in terms of cortical termination, is inconsistent in the literature. Despite being a high-profile and controversial topic, heterotopic callosal bundles (HeCBs) have not been studied from a whole-brain perspective. Here, we used multi-modal magnetic resonance imaging data from Human Connectome Project Development to explore these two topographic aspects by combining whole-brain tractography based on multi-shell multi-tissue constrained spherical deconvolution, the post-tractography reducing-false-positive-streamline algorithm of Convex Optimization Modeling for Microstructure Informed Tractography 2, and the new cortex parcellation atlas of Human Connectome Project multi-modal parcellation, version 1.0. We proposed that the callosal streamlines would demonstrate a topological arrangement of coronal segments arranged from anterior to posterior, with each perpendicular to the long axis of the mid-CC following its natural curvature, and the adjacent segments overlapping one another owing to the existence of HeCBs. We found that the cortices connected by the coronal segments, from anterior to posterior, corresponded exactly to the cortices from anterior to posterior in the flattened cortical surfaces of this atlas, indicating the original relative positions of the neocortex before curling and flipping during brain evolution. For each cortical area defined by this atlas, the sum strength of the HeCBs was far greater than that of the homotopic callosal bundle. Our findings on the topography of the whole CC would help in further understanding the network between the bilateral hemispheres and preventing disconnection syndromes in clinical settings. |
format | Online Article Text |
id | pubmed-10264571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102645712023-06-15 Topological arrangement of coronal segments in human callosal fibers in vivo tractography Zhang, Hui Feng, Yuan Li, Weiguang Liang, Xili Huang, Guanglong Qi, Songtao Front Neuroanat Neuroanatomy The topography of human callosal fibers in the midsagittal corpus callosum (mid-CC), in terms of cortical termination, is inconsistent in the literature. Despite being a high-profile and controversial topic, heterotopic callosal bundles (HeCBs) have not been studied from a whole-brain perspective. Here, we used multi-modal magnetic resonance imaging data from Human Connectome Project Development to explore these two topographic aspects by combining whole-brain tractography based on multi-shell multi-tissue constrained spherical deconvolution, the post-tractography reducing-false-positive-streamline algorithm of Convex Optimization Modeling for Microstructure Informed Tractography 2, and the new cortex parcellation atlas of Human Connectome Project multi-modal parcellation, version 1.0. We proposed that the callosal streamlines would demonstrate a topological arrangement of coronal segments arranged from anterior to posterior, with each perpendicular to the long axis of the mid-CC following its natural curvature, and the adjacent segments overlapping one another owing to the existence of HeCBs. We found that the cortices connected by the coronal segments, from anterior to posterior, corresponded exactly to the cortices from anterior to posterior in the flattened cortical surfaces of this atlas, indicating the original relative positions of the neocortex before curling and flipping during brain evolution. For each cortical area defined by this atlas, the sum strength of the HeCBs was far greater than that of the homotopic callosal bundle. Our findings on the topography of the whole CC would help in further understanding the network between the bilateral hemispheres and preventing disconnection syndromes in clinical settings. Frontiers Media S.A. 2023-05-31 /pmc/articles/PMC10264571/ /pubmed/37325424 http://dx.doi.org/10.3389/fnana.2023.1097247 Text en Copyright © 2023 Zhang, Feng, Li, Liang, Huang and Qi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroanatomy Zhang, Hui Feng, Yuan Li, Weiguang Liang, Xili Huang, Guanglong Qi, Songtao Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title | Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title_full | Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title_fullStr | Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title_full_unstemmed | Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title_short | Topological arrangement of coronal segments in human callosal fibers in vivo tractography |
title_sort | topological arrangement of coronal segments in human callosal fibers in vivo tractography |
topic | Neuroanatomy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264571/ https://www.ncbi.nlm.nih.gov/pubmed/37325424 http://dx.doi.org/10.3389/fnana.2023.1097247 |
work_keys_str_mv | AT zhanghui topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography AT fengyuan topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography AT liweiguang topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography AT liangxili topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography AT huangguanglong topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography AT qisongtao topologicalarrangementofcoronalsegmentsinhumancallosalfibersinvivotractography |