Cargando…
A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature
Roots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264708/ https://www.ncbi.nlm.nih.gov/pubmed/37324682 http://dx.doi.org/10.3389/fpls.2023.1166511 |
_version_ | 1785058382568226816 |
---|---|
author | Dermendjiev, Georgi Schnurer, Madeleine Stewart, Ethan Nägele, Thomas Marino, Giada Leister, Dario Thür, Alexandra Plott, Stefan Jeż, Jakub Ibl, Verena |
author_facet | Dermendjiev, Georgi Schnurer, Madeleine Stewart, Ethan Nägele, Thomas Marino, Giada Leister, Dario Thür, Alexandra Plott, Stefan Jeż, Jakub Ibl, Verena |
author_sort | Dermendjiev, Georgi |
collection | PubMed |
description | Roots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition and consequently correlate with plant performance while being highly dependent on the surrounding environment, such as soil properties and therefore environmental conditions. Thus, especially for crop plants and regarding agricultural challenges, it is essential to perform molecular and phenotypic analyses of the root system under conditions as near as possible to nature (#asnearaspossibletonature). To prevent root illumination during experimental procedures, which would heavily affect root development, Dark-Root (D-Root) devices (DRDs) have been developed. In this article, we describe the construction and different applications of a sustainable, affordable, flexible, and easy to assemble open-hardware bench-top LEGO® DRD, the DRD-BIBLOX (Brick Black Box). The DRD-BIBLOX consists of one or more 3D-printed rhizoboxes, which can be filled with soil while still providing root visibility. The rhizoboxes sit in a scaffold of secondhand LEGO® bricks, which allows root development in the dark and non-invasive root tracking with an infrared (IR) camera and an IR light-emitting diode (LED) cluster. Proteomic analyses confirmed significant effects of root illumination on barley root and shoot proteomes. Additionally, we confirmed the significant effect of root illumination on barley root and shoot phenotypes. Our data therefore reinforces the importance of the application of field conditions in the lab and the value of our novel device, the DRD-BIBLOX. We further provide a DRD-BIBLOX application spectrum, spanning from investigating a variety of plant species and soil conditions and simulating different environmental conditions and stresses, to proteomic and phenotypic analyses, including early root tracking in the dark. |
format | Online Article Text |
id | pubmed-10264708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102647082023-06-15 A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature Dermendjiev, Georgi Schnurer, Madeleine Stewart, Ethan Nägele, Thomas Marino, Giada Leister, Dario Thür, Alexandra Plott, Stefan Jeż, Jakub Ibl, Verena Front Plant Sci Plant Science Roots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition and consequently correlate with plant performance while being highly dependent on the surrounding environment, such as soil properties and therefore environmental conditions. Thus, especially for crop plants and regarding agricultural challenges, it is essential to perform molecular and phenotypic analyses of the root system under conditions as near as possible to nature (#asnearaspossibletonature). To prevent root illumination during experimental procedures, which would heavily affect root development, Dark-Root (D-Root) devices (DRDs) have been developed. In this article, we describe the construction and different applications of a sustainable, affordable, flexible, and easy to assemble open-hardware bench-top LEGO® DRD, the DRD-BIBLOX (Brick Black Box). The DRD-BIBLOX consists of one or more 3D-printed rhizoboxes, which can be filled with soil while still providing root visibility. The rhizoboxes sit in a scaffold of secondhand LEGO® bricks, which allows root development in the dark and non-invasive root tracking with an infrared (IR) camera and an IR light-emitting diode (LED) cluster. Proteomic analyses confirmed significant effects of root illumination on barley root and shoot proteomes. Additionally, we confirmed the significant effect of root illumination on barley root and shoot phenotypes. Our data therefore reinforces the importance of the application of field conditions in the lab and the value of our novel device, the DRD-BIBLOX. We further provide a DRD-BIBLOX application spectrum, spanning from investigating a variety of plant species and soil conditions and simulating different environmental conditions and stresses, to proteomic and phenotypic analyses, including early root tracking in the dark. Frontiers Media S.A. 2023-05-31 /pmc/articles/PMC10264708/ /pubmed/37324682 http://dx.doi.org/10.3389/fpls.2023.1166511 Text en Copyright © 2023 Dermendjiev, Schnurer, Stewart, Nägele, Marino, Leister, Thür, Plott, Jeż and Ibl https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Dermendjiev, Georgi Schnurer, Madeleine Stewart, Ethan Nägele, Thomas Marino, Giada Leister, Dario Thür, Alexandra Plott, Stefan Jeż, Jakub Ibl, Verena A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title | A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title_full | A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title_fullStr | A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title_full_unstemmed | A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title_short | A bench-top Dark-Root device built with LEGO(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
title_sort | bench-top dark-root device built with lego(®) bricks enables a non-invasive plant root development analysis in soil conditions mirroring nature |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264708/ https://www.ncbi.nlm.nih.gov/pubmed/37324682 http://dx.doi.org/10.3389/fpls.2023.1166511 |
work_keys_str_mv | AT dermendjievgeorgi abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT schnurermadeleine abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT stewartethan abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT nagelethomas abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT marinogiada abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT leisterdario abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT thuralexandra abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT plottstefan abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT jezjakub abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT iblverena abenchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT dermendjievgeorgi benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT schnurermadeleine benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT stewartethan benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT nagelethomas benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT marinogiada benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT leisterdario benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT thuralexandra benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT plottstefan benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT jezjakub benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature AT iblverena benchtopdarkrootdevicebuiltwithlegobricksenablesanoninvasiveplantrootdevelopmentanalysisinsoilconditionsmirroringnature |