Cargando…

Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning

Circulating circular RNAs (circRNAs) are emerging as novel biomarkers for cardiovascular diseases (CVDs). Machine learning can provide optimal predictions on the diagnosis of diseases. Here we performed a proof‐of‐concept study to determine if combining circRNAs with an artificial intelligence appro...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiulian, Boeckel, Jes‐Niels, Yao, Jianhua, Zhao, Juan, Bai, Yuzheng, Lv, Yicheng, Hu, Meiyu, Meng, Danni, Xie, Yuan, Yu, Pujiao, Xi, Peng, Xu, Jiahong, Zhang, Yi, Dimmeler, Stefanie, Xiao, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264944/
https://www.ncbi.nlm.nih.gov/pubmed/37323876
http://dx.doi.org/10.1002/mco2.299
_version_ 1785058432551747584
author Zhou, Qiulian
Boeckel, Jes‐Niels
Yao, Jianhua
Zhao, Juan
Bai, Yuzheng
Lv, Yicheng
Hu, Meiyu
Meng, Danni
Xie, Yuan
Yu, Pujiao
Xi, Peng
Xu, Jiahong
Zhang, Yi
Dimmeler, Stefanie
Xiao, Junjie
author_facet Zhou, Qiulian
Boeckel, Jes‐Niels
Yao, Jianhua
Zhao, Juan
Bai, Yuzheng
Lv, Yicheng
Hu, Meiyu
Meng, Danni
Xie, Yuan
Yu, Pujiao
Xi, Peng
Xu, Jiahong
Zhang, Yi
Dimmeler, Stefanie
Xiao, Junjie
author_sort Zhou, Qiulian
collection PubMed
description Circulating circular RNAs (circRNAs) are emerging as novel biomarkers for cardiovascular diseases (CVDs). Machine learning can provide optimal predictions on the diagnosis of diseases. Here we performed a proof‐of‐concept study to determine if combining circRNAs with an artificial intelligence approach works in diagnosing CVD. We used acute myocardial infarction (AMI) as a model setup to prove the claim. We determined the expression level of five hypoxia‐induced circRNAs, including cZNF292, cAFF1, cDENND4C, cTHSD1, and cSRSF4, in the whole blood of coronary angiography positive AMI and negative non‐AMI patients. Based on feature selection by using lasso with 10‐fold cross validation, prediction model by logistic regression, and ROC curve analysis, we found that cZNF292 combined with clinical information (CM), including age, gender, body mass index, heart rate, and diastolic blood pressure, can predict AMI effectively. In a validation cohort, CM + cZNF292 can separate AMI and non‐AMI patients, unstable angina and AMI patients, acute coronary syndromes (ACS), and non‐ACS patients. RNA stability study demonstrated that cZNF292 was stable. Knockdown of cZNF292 in endothelial cells or cardiomyocytes showed anti‐apoptosis effects in oxygen glucose deprivation/reoxygenation. Thus, we identify circulating cZNF292 as a potential biomarker for AMI and construct a prediction model “CM + cZNF292.”
format Online
Article
Text
id pubmed-10264944
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102649442023-06-15 Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning Zhou, Qiulian Boeckel, Jes‐Niels Yao, Jianhua Zhao, Juan Bai, Yuzheng Lv, Yicheng Hu, Meiyu Meng, Danni Xie, Yuan Yu, Pujiao Xi, Peng Xu, Jiahong Zhang, Yi Dimmeler, Stefanie Xiao, Junjie MedComm (2020) Original Articles Circulating circular RNAs (circRNAs) are emerging as novel biomarkers for cardiovascular diseases (CVDs). Machine learning can provide optimal predictions on the diagnosis of diseases. Here we performed a proof‐of‐concept study to determine if combining circRNAs with an artificial intelligence approach works in diagnosing CVD. We used acute myocardial infarction (AMI) as a model setup to prove the claim. We determined the expression level of five hypoxia‐induced circRNAs, including cZNF292, cAFF1, cDENND4C, cTHSD1, and cSRSF4, in the whole blood of coronary angiography positive AMI and negative non‐AMI patients. Based on feature selection by using lasso with 10‐fold cross validation, prediction model by logistic regression, and ROC curve analysis, we found that cZNF292 combined with clinical information (CM), including age, gender, body mass index, heart rate, and diastolic blood pressure, can predict AMI effectively. In a validation cohort, CM + cZNF292 can separate AMI and non‐AMI patients, unstable angina and AMI patients, acute coronary syndromes (ACS), and non‐ACS patients. RNA stability study demonstrated that cZNF292 was stable. Knockdown of cZNF292 in endothelial cells or cardiomyocytes showed anti‐apoptosis effects in oxygen glucose deprivation/reoxygenation. Thus, we identify circulating cZNF292 as a potential biomarker for AMI and construct a prediction model “CM + cZNF292.” John Wiley and Sons Inc. 2023-06-13 /pmc/articles/PMC10264944/ /pubmed/37323876 http://dx.doi.org/10.1002/mco2.299 Text en © 2023 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Zhou, Qiulian
Boeckel, Jes‐Niels
Yao, Jianhua
Zhao, Juan
Bai, Yuzheng
Lv, Yicheng
Hu, Meiyu
Meng, Danni
Xie, Yuan
Yu, Pujiao
Xi, Peng
Xu, Jiahong
Zhang, Yi
Dimmeler, Stefanie
Xiao, Junjie
Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title_full Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title_fullStr Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title_full_unstemmed Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title_short Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning
title_sort diagnosis of acute myocardial infarction using a combination of circulating circular rna cznf292 and clinical information based on machine learning
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264944/
https://www.ncbi.nlm.nih.gov/pubmed/37323876
http://dx.doi.org/10.1002/mco2.299
work_keys_str_mv AT zhouqiulian diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT boeckeljesniels diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT yaojianhua diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT zhaojuan diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT baiyuzheng diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT lvyicheng diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT humeiyu diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT mengdanni diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT xieyuan diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT yupujiao diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT xipeng diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT xujiahong diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT zhangyi diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT dimmelerstefanie diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning
AT xiaojunjie diagnosisofacutemyocardialinfarctionusingacombinationofcirculatingcircularrnacznf292andclinicalinformationbasedonmachinelearning