Cargando…

Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes

The structures of anode materials significantly affect their properties in rechargeable batteries. Material nanosizing and electrode integrity are both beneficial for performance enhancement of batteries, but it is challenging to guarantee optimized nanosizing particles and high structural integrity...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Huimin, Zhang, Shuo, Yan, Liting, Xing, Yanlong, Zhang, Zhichao, Zheng, Qiuju, Shen, Jianxing, Zhao, Xuebo, Wang, Lianzhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265062/
https://www.ncbi.nlm.nih.gov/pubmed/37088779
http://dx.doi.org/10.1002/advs.202206587
_version_ 1785058451298189312
author Jiang, Huimin
Zhang, Shuo
Yan, Liting
Xing, Yanlong
Zhang, Zhichao
Zheng, Qiuju
Shen, Jianxing
Zhao, Xuebo
Wang, Lianzhou
author_facet Jiang, Huimin
Zhang, Shuo
Yan, Liting
Xing, Yanlong
Zhang, Zhichao
Zheng, Qiuju
Shen, Jianxing
Zhao, Xuebo
Wang, Lianzhou
author_sort Jiang, Huimin
collection PubMed
description The structures of anode materials significantly affect their properties in rechargeable batteries. Material nanosizing and electrode integrity are both beneficial for performance enhancement of batteries, but it is challenging to guarantee optimized nanosizing particles and high structural integrity simultaneously. Herein, a programmable assembly strategy of metal–organic frameworks (MOFs) is used to construct a Sn‐based MOF superstructure precursor. After calcination under inert atmosphere, the as‐fabricated Sn(3)(PO(4))(2)@phosphorus doped carbon (Sn(3)(PO(4))(2)@PC‐48) well inherited the morphology of Sn‐MOF superstructure precursor. The resultant new material exhibits appreciable reversible capacity and low capacity degradation for K(+) storage (144.0 mAh g(−1) at 5 A g(−1) with 90.1% capacity retained after 10000 cycles) and Na(+) storage (202.5 mAh g(−1) at 5 A g(−1) with 96.0% capacity retained after 8000 cycles). Detailed characterizations, density functional theory calculations, and finite element analysis simulations reveal that the optimized electronic structure and the stress‐dispersed superstructure morphology of Sn(3)(PO(4))(2)@PC promote the electronic conductivity, enhance K(+)/ Na(+) binding ability and improve the structure stabilization efficiently. This strategy to optimize the structure of anode materials by controlling the MOF growth process offer new dimension to regulate the materials precisely in the energy field.
format Online
Article
Text
id pubmed-10265062
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102650622023-06-15 Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes Jiang, Huimin Zhang, Shuo Yan, Liting Xing, Yanlong Zhang, Zhichao Zheng, Qiuju Shen, Jianxing Zhao, Xuebo Wang, Lianzhou Adv Sci (Weinh) Research Articles The structures of anode materials significantly affect their properties in rechargeable batteries. Material nanosizing and electrode integrity are both beneficial for performance enhancement of batteries, but it is challenging to guarantee optimized nanosizing particles and high structural integrity simultaneously. Herein, a programmable assembly strategy of metal–organic frameworks (MOFs) is used to construct a Sn‐based MOF superstructure precursor. After calcination under inert atmosphere, the as‐fabricated Sn(3)(PO(4))(2)@phosphorus doped carbon (Sn(3)(PO(4))(2)@PC‐48) well inherited the morphology of Sn‐MOF superstructure precursor. The resultant new material exhibits appreciable reversible capacity and low capacity degradation for K(+) storage (144.0 mAh g(−1) at 5 A g(−1) with 90.1% capacity retained after 10000 cycles) and Na(+) storage (202.5 mAh g(−1) at 5 A g(−1) with 96.0% capacity retained after 8000 cycles). Detailed characterizations, density functional theory calculations, and finite element analysis simulations reveal that the optimized electronic structure and the stress‐dispersed superstructure morphology of Sn(3)(PO(4))(2)@PC promote the electronic conductivity, enhance K(+)/ Na(+) binding ability and improve the structure stabilization efficiently. This strategy to optimize the structure of anode materials by controlling the MOF growth process offer new dimension to regulate the materials precisely in the energy field. John Wiley and Sons Inc. 2023-04-23 /pmc/articles/PMC10265062/ /pubmed/37088779 http://dx.doi.org/10.1002/advs.202206587 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jiang, Huimin
Zhang, Shuo
Yan, Liting
Xing, Yanlong
Zhang, Zhichao
Zheng, Qiuju
Shen, Jianxing
Zhao, Xuebo
Wang, Lianzhou
Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title_full Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title_fullStr Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title_full_unstemmed Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title_short Stress‐Dispersed Superstructure of Sn(3)(PO(4))(2)@PC Derived from Programmable Assembly of Metal–Organic Framework as Long‐Life Potassium/Sodium‐Ion Batteries Anodes
title_sort stress‐dispersed superstructure of sn(3)(po(4))(2)@pc derived from programmable assembly of metal–organic framework as long‐life potassium/sodium‐ion batteries anodes
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265062/
https://www.ncbi.nlm.nih.gov/pubmed/37088779
http://dx.doi.org/10.1002/advs.202206587
work_keys_str_mv AT jianghuimin stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT zhangshuo stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT yanliting stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT xingyanlong stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT zhangzhichao stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT zhengqiuju stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT shenjianxing stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT zhaoxuebo stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes
AT wanglianzhou stressdispersedsuperstructureofsn3po42pcderivedfromprogrammableassemblyofmetalorganicframeworkaslonglifepotassiumsodiumionbatteriesanodes