Cargando…
Nonlinear data fusion over Entity–Relation graphs for Drug–Target Interaction prediction
MOTIVATION: The prediction of reliable Drug–Target Interactions (DTIs) is a key task in computer-aided drug design and repurposing. Here, we present a new approach based on data fusion for DTI prediction built on top of the NXTfusion library, which generalizes the Matrix Factorization paradigm by ex...
Autores principales: | Mazzone, Eugenio, Moreau, Yves, Fariselli, Piero, Raimondi, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265447/ https://www.ncbi.nlm.nih.gov/pubmed/37255310 http://dx.doi.org/10.1093/bioinformatics/btad348 |
Ejemplares similares
-
From genotype to phenotype in Arabidopsis thaliana: in-silico genome interpretation predicts 288 phenotypes from sequencing data
por: Raimondi, Daniele, et al.
Publicado: (2021) -
Insight into the protein solubility driving forces with neural attention
por: Raimondi, Daniele, et al.
Publicado: (2020) -
Current cancer driver variant predictors learn to recognize driver genes instead of functional variants
por: Raimondi, Daniele, et al.
Publicado: (2021) -
Editorial: Towards genome interpretation: Computational methods to model the genotype-phenotype relationship
por: Raimondi, Daniele, et al.
Publicado: (2022) -
An interpretable low-complexity machine learning framework for robust exome-based in-silico diagnosis of Crohn’s disease patients
por: Raimondi, Daniele, et al.
Publicado: (2020)