Cargando…
Machine learning and disease prediction in obstetrics
Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital de...
Autores principales: | Arain, Zara, Iliodromiti, Stamatina, Slabaugh, Gregory, David, Anna L., Chowdhury, Tina T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265477/ https://www.ncbi.nlm.nih.gov/pubmed/37324652 http://dx.doi.org/10.1016/j.crphys.2023.100099 |
Ejemplares similares
-
Biomechanical remodeling of the murine descending thoracic aorta during late-gestation pregnancy
por: Vargas, Ana I., et al.
Publicado: (2023) -
Assessing uterine electrophysiology prior to elective term induction of labor
por: Mehl, Sarah T., et al.
Publicado: (2023) -
Understanding avian egg cuticle formation in the oviduct: a study of its origin and deposition(†)
por: Wilson, Peter W., et al.
Publicado: (2017) -
Role of Stro1(+)/CD44(+) stem cells in myometrial physiology and uterine remodeling during pregnancy()
por: Mas, Aymara, et al.
Publicado: (2017) -
Defining age- and lactocrine-sensitive elements of the neonatal porcine uterine microRNA–mRNA interactome(†)(,)(‡)
por: George, Ashley F., et al.
Publicado: (2017)