Cargando…
ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs
Personal health data is subject to privacy regulations, making it challenging to apply centralized data-driven methods in healthcare, where personalized training data is frequently used. Federated Learning (FL) promises to provide a decentralized solution to this problem. In FL, siloed data is used...
Autores principales: | Riedel, Pascal, von Schwerin, Reinhold, Schaudt, Daniel, Hafner, Alexander, Späte, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265567/ https://www.ncbi.nlm.nih.gov/pubmed/37359194 http://dx.doi.org/10.1007/s41666-023-00132-7 |
Ejemplares similares
-
Leveraging human expert image annotations to improve pneumonia differentiation through human knowledge distillation
por: Schaudt, Daniel, et al.
Publicado: (2023) -
Augmentation strategies for an imbalanced learning problem on a novel COVID-19 severity dataset
por: Schaudt, Daniel, et al.
Publicado: (2023) -
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
FedHGCDroid: An Adaptive Multi-Dimensional Federated Learning for Privacy-Preserving Android Malware Classification
por: Jiang, Changnan, et al.
Publicado: (2022) -
Reseek-Arrhythmia: Empirical Evaluation of ResNet Architecture for Detection of Arrhythmia
por: Haq, Shams Ul, et al.
Publicado: (2023)