Cargando…
Reducing the number of unnecessary biopsies for mammographic BI-RADS 4 lesions through a deep transfer learning method
BACKGROUND: In clinical practice, reducing unnecessary biopsies for mammographic BI-RADS 4 lesions is crucial. The objective of this study was to explore the potential value of deep transfer learning (DTL) based on the different fine-tuning strategies for Inception V3 to reduce the number of unneces...
Autores principales: | Meng, Mingzhu, Li, Hong, Zhang, Ming, He, Guangyuan, Wang, Long, Shen, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265786/ https://www.ncbi.nlm.nih.gov/pubmed/37312026 http://dx.doi.org/10.1186/s12880-023-01023-4 |
Ejemplares similares
-
Reducing the number of unnecessary biopsies of US-BI-RADS 4a lesions through a deep learning method for residents-in-training: a cross-sectional study
por: Zhao, Chenyang, et al.
Publicado: (2020) -
Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions
por: Wang, Shi-Jie, et al.
Publicado: (2022) -
The Impact of Adding Digital Breast Tomosynthesis to BI-RADS Categorization of Mammographically Equivocal Breast Lesions
por: Hassan, Rania Mostafa, et al.
Publicado: (2023) -
Comparison of Danish dichotomous and BI-RADS classifications of mammographic density
por: Hodge, Rebecca, et al.
Publicado: (2014) -
MRI for the assessment of malignancy in BI-RADS 4 mammographic microcalcifications
por: Bennani-Baiti, Barbara, et al.
Publicado: (2017)