Cargando…
Data quantity governance for machine learning in materials science
Data-driven machine learning (ML) is widely employed in the analysis of materials structure–activity relationships, performance optimization and materials design due to its superior ability to reveal latent data patterns and make accurate prediction. However, because of the laborious process of mate...
Autores principales: | Liu, Yue, Yang, Zhengwei, Zou, Xinxin, Ma, Shuchang, Liu, Dahui, Avdeev, Maxim, Shi, Siqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265966/ https://www.ncbi.nlm.nih.gov/pubmed/37323811 http://dx.doi.org/10.1093/nsr/nwad125 |
Ejemplares similares
-
Big data and machine learning for materials science
por: Rodrigues, Jose F., et al.
Publicado: (2021) -
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Functional Output
Regression for Machine Learning
in Materials Science
por: Iwayama, Megumi, et al.
Publicado: (2022) -
Application of Machine Learning in Material Synthesis and Property Prediction
por: Huang, Guannan, et al.
Publicado: (2023) -
A Review of Performance Prediction Based on Machine Learning in Materials Science
por: Fu, Ziyang, et al.
Publicado: (2022)