Cargando…
Bayesian interpolation with deep linear networks
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory. We give here a complete solution in the special case of linear networks with output dimension one trained using zero noise Bayesian inference with Gaussian weig...
Autores principales: | Hanin, Boris, Zlokapa, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266010/ https://www.ncbi.nlm.nih.gov/pubmed/37252994 http://dx.doi.org/10.1073/pnas.2301345120 |
Ejemplares similares
-
Interpolation of linear operators
por: Krein, S G, et al.
Publicado: (1982) -
Extension and interpolation of linear operators and matrix functions
por: Gohberg, I
Publicado: (1990) -
Interpolation functors and interpolation spaces
por: Brudnyi, Yu A, et al.
Publicado: (1991) -
Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity
por: Moussaoui, Ahmed, et al.
Publicado: (2016) -
Full Bayesian identification of linear dynamic systems using stable kernels
por: Pillonetto, G., et al.
Publicado: (2023)