Cargando…
MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA
BACKGROUND: Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266224/ https://www.ncbi.nlm.nih.gov/pubmed/37325630 http://dx.doi.org/10.3389/fimmu.2023.1188774 |
_version_ | 1785058702828503040 |
---|---|
author | Zhang, Yuxin Zhang, Jiahui Sun, Zhongyi Wang, Hui Ning, Ruonan Xu, Longyu Zhao, Yichen Yang, Kai Xi, Xiaobing Tian, Jiwei |
author_facet | Zhang, Yuxin Zhang, Jiahui Sun, Zhongyi Wang, Hui Ning, Ruonan Xu, Longyu Zhao, Yichen Yang, Kai Xi, Xiaobing Tian, Jiwei |
author_sort | Zhang, Yuxin |
collection | PubMed |
description | BACKGROUND: Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of this study was to identify autophagy-related biomarkers and gene regulatory networks in IDD and potential therapeutic targets. METHODS: We obtained the gene expression profiles of IDD by downloading the datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO) public database. Subsequently, differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), and gene set enrichment analysis (GSEA) were performed to explore the biological functions of DEGs. Differentially expressed autophagy-related genes (DE-ARGs) were then crossed with the autophagy gene database. The hub genes were screened using the DE-ARGs protein–protein interaction (PPI) network. The correlation between the hub genes and immune infiltration and the construction of the gene regulatory network of the hub genes were confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation of hub genes in a rat IDD model. RESULTS: We obtained 636 DEGs enriched in the autophagy pathway. Our analysis revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA, CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell infiltration analysis revealed that there was an increased proportion of CD8(+) T cells and M0 macrophages in IDD, whereas CD4(+) memory T cells, neutrophils, resting dendritic cells, follicular helper T cells, and monocytes were much less abundant. Subsequently, the competitive endogenous RNA (ceRNA) network was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs (miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and CAPN1, were shown to be consistent with the bioinformatic analysis results. CONCLUSION: Our study identified MAPK8 and CAPN1 as key biomarkers of IDD. These key hub genes may be potential therapeutic targets for IDD. |
format | Online Article Text |
id | pubmed-10266224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102662242023-06-15 MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA Zhang, Yuxin Zhang, Jiahui Sun, Zhongyi Wang, Hui Ning, Ruonan Xu, Longyu Zhao, Yichen Yang, Kai Xi, Xiaobing Tian, Jiwei Front Immunol Immunology BACKGROUND: Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of this study was to identify autophagy-related biomarkers and gene regulatory networks in IDD and potential therapeutic targets. METHODS: We obtained the gene expression profiles of IDD by downloading the datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO) public database. Subsequently, differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), and gene set enrichment analysis (GSEA) were performed to explore the biological functions of DEGs. Differentially expressed autophagy-related genes (DE-ARGs) were then crossed with the autophagy gene database. The hub genes were screened using the DE-ARGs protein–protein interaction (PPI) network. The correlation between the hub genes and immune infiltration and the construction of the gene regulatory network of the hub genes were confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation of hub genes in a rat IDD model. RESULTS: We obtained 636 DEGs enriched in the autophagy pathway. Our analysis revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA, CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell infiltration analysis revealed that there was an increased proportion of CD8(+) T cells and M0 macrophages in IDD, whereas CD4(+) memory T cells, neutrophils, resting dendritic cells, follicular helper T cells, and monocytes were much less abundant. Subsequently, the competitive endogenous RNA (ceRNA) network was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs (miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and CAPN1, were shown to be consistent with the bioinformatic analysis results. CONCLUSION: Our study identified MAPK8 and CAPN1 as key biomarkers of IDD. These key hub genes may be potential therapeutic targets for IDD. Frontiers Media S.A. 2023-05-30 /pmc/articles/PMC10266224/ /pubmed/37325630 http://dx.doi.org/10.3389/fimmu.2023.1188774 Text en Copyright © 2023 Zhang, Zhang, Sun, Wang, Ning, Xu, Zhao, Yang, Xi and Tian https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Zhang, Yuxin Zhang, Jiahui Sun, Zhongyi Wang, Hui Ning, Ruonan Xu, Longyu Zhao, Yichen Yang, Kai Xi, Xiaobing Tian, Jiwei MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title | MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title_full | MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title_fullStr | MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title_full_unstemmed | MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title_short | MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA |
title_sort | mapk8 and capn1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and cerna |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266224/ https://www.ncbi.nlm.nih.gov/pubmed/37325630 http://dx.doi.org/10.3389/fimmu.2023.1188774 |
work_keys_str_mv | AT zhangyuxin mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT zhangjiahui mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT sunzhongyi mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT wanghui mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT ningruonan mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT xulongyu mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT zhaoyichen mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT yangkai mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT xixiaobing mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna AT tianjiwei mapk8andcapn1aspotentialbiomarkersofintervertebraldiscdegenerationoverlappingimmuneinfiltrationautophagyandcerna |