Cargando…
Molecular docking analysis of phytochemicals with estrogen receptor alpha
Breast cancer (BC) is linked to estrogen receptor alpha (ER-α) positive. Tamoxifen and other estrogen selective modulators have proven to be beneficial in slowing the progression of ER-α BC. However, tamoxifen resistance emerges as a result of long-term treatment and cancer development. Therefore, i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266367/ https://www.ncbi.nlm.nih.gov/pubmed/37323553 http://dx.doi.org/10.6026/97320630018697 |
Sumario: | Breast cancer (BC) is linked to estrogen receptor alpha (ER-α) positive. Tamoxifen and other estrogen selective modulators have proven to be beneficial in slowing the progression of ER-α BC. However, tamoxifen resistance emerges as a result of long-term treatment and cancer development. Therefore, it is of interest to document data on the molecular docking analysis of phytochemicals targeting with Estrogen Receptor-alpha. The screening of the phytochemicals from the ZINC database (a total of 87133 compounds) against ER-α protein was completed. We show that ZINC69481841 and ZINC95486083bind strongly to ER- with binding energies of 10.47 and 11.88 Kcal/mol, respectively, which were significantly greater than the control compound (−8.32Kcal/mol). ZINC69481841 and ZINC95486083 were found to bind with the key residues (Leu387, Arg394, Glu353, and Thr347) of ER-α protein. Data shows that the lead compounds (ZINC69481841 and ZINC95486083) have an acceptable range of ADMET and drug-likeness properties for further consideration in drug discovery. |
---|