Cargando…
Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study
Objectives: To describe and assess the risk of bias of the primary input studies that underpinned the Global Burden of Disease Study (GBD) 2019 modelled prevalence estimates of low back pain (LBP), neck pain (NP), and knee osteoarthritis (OA), from Australia, Brazil, Canada, Spain, and Switzerland....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266422/ https://www.ncbi.nlm.nih.gov/pubmed/37325175 http://dx.doi.org/10.3389/ijph.2023.1605763 |
_version_ | 1785058737276321792 |
---|---|
author | Muñoz Laguna, Javier Puhan, Milo A. Rodríguez Artalejo, Fernando De Pauw, Robby Wyper, Grant M. A. Devleesschauwer, Brecht Santos, João V. Hincapié, Cesar A. |
author_facet | Muñoz Laguna, Javier Puhan, Milo A. Rodríguez Artalejo, Fernando De Pauw, Robby Wyper, Grant M. A. Devleesschauwer, Brecht Santos, João V. Hincapié, Cesar A. |
author_sort | Muñoz Laguna, Javier |
collection | PubMed |
description | Objectives: To describe and assess the risk of bias of the primary input studies that underpinned the Global Burden of Disease Study (GBD) 2019 modelled prevalence estimates of low back pain (LBP), neck pain (NP), and knee osteoarthritis (OA), from Australia, Brazil, Canada, Spain, and Switzerland. To evaluate the certainty of the GBD modelled prevalence evidence. Methods: Primary studies were identified using the GBD Data Input Sources Tool and their risk of bias was assessed using a validated tool. We rated the certainty of modelled prevalence estimates based on the GRADE Guidelines 30―the GRADE approach for modelled evidence. Results: Seventy-two primary studies (LBP: 67, NP: 2, knee OA: 3) underpinned the GBD estimates. Most studies had limited representativeness of their study populations, used suboptimal case definitions and applied assessment instruments with unknown psychometric properties. The certainty of modelled prevalence estimates was low, mainly due to risk of bias and indirectness. Conclusion: Beyond the risk of bias of primary input studies for LBP, NP, and knee OA in GBD 2019, the certainty of country-specific modelled prevalence estimates still have room for improvement. |
format | Online Article Text |
id | pubmed-10266422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102664222023-06-15 Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study Muñoz Laguna, Javier Puhan, Milo A. Rodríguez Artalejo, Fernando De Pauw, Robby Wyper, Grant M. A. Devleesschauwer, Brecht Santos, João V. Hincapié, Cesar A. Int J Public Health Public Health Archive Objectives: To describe and assess the risk of bias of the primary input studies that underpinned the Global Burden of Disease Study (GBD) 2019 modelled prevalence estimates of low back pain (LBP), neck pain (NP), and knee osteoarthritis (OA), from Australia, Brazil, Canada, Spain, and Switzerland. To evaluate the certainty of the GBD modelled prevalence evidence. Methods: Primary studies were identified using the GBD Data Input Sources Tool and their risk of bias was assessed using a validated tool. We rated the certainty of modelled prevalence estimates based on the GRADE Guidelines 30―the GRADE approach for modelled evidence. Results: Seventy-two primary studies (LBP: 67, NP: 2, knee OA: 3) underpinned the GBD estimates. Most studies had limited representativeness of their study populations, used suboptimal case definitions and applied assessment instruments with unknown psychometric properties. The certainty of modelled prevalence estimates was low, mainly due to risk of bias and indirectness. Conclusion: Beyond the risk of bias of primary input studies for LBP, NP, and knee OA in GBD 2019, the certainty of country-specific modelled prevalence estimates still have room for improvement. Frontiers Media S.A. 2023-05-31 /pmc/articles/PMC10266422/ /pubmed/37325175 http://dx.doi.org/10.3389/ijph.2023.1605763 Text en Copyright © 2023 Muñoz Laguna, Puhan, Rodríguez Artalejo, De Pauw, Wyper, Devleesschauwer, Santos and Hincapié. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Public Health Archive Muñoz Laguna, Javier Puhan, Milo A. Rodríguez Artalejo, Fernando De Pauw, Robby Wyper, Grant M. A. Devleesschauwer, Brecht Santos, João V. Hincapié, Cesar A. Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title | Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title_full | Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title_fullStr | Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title_full_unstemmed | Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title_short | Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study |
title_sort | certainty of the global burden of disease 2019 modelled prevalence estimates for musculoskeletal conditions: a meta-epidemiological study |
topic | Public Health Archive |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266422/ https://www.ncbi.nlm.nih.gov/pubmed/37325175 http://dx.doi.org/10.3389/ijph.2023.1605763 |
work_keys_str_mv | AT munozlagunajavier certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT puhanmiloa certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT rodriguezartalejofernando certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT depauwrobby certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT wypergrantma certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT devleesschauwerbrecht certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT santosjoaov certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy AT hincapiecesara certaintyoftheglobalburdenofdisease2019modelledprevalenceestimatesformusculoskeletalconditionsametaepidemiologicalstudy |