Cargando…
Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans
Kidney tumor (KT) is one of the diseases that have affected our society and is the seventh most common tumor in both men and women worldwide. The early detection of KT has significant benefits in reducing death rates, producing preventive measures that reduce effects, and overcoming the tumor. Compa...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266909/ https://www.ncbi.nlm.nih.gov/pubmed/37323471 http://dx.doi.org/10.1155/2022/3861161 |
_version_ | 1785058832340221952 |
---|---|
author | Alzu'bi, Dalia Abdullah, Malak Hmeidi, Ismail AlAzab, Rami Gharaibeh, Maha El-Heis, Mwaffaq Almotairi, Khaled H. Forestiero, Agostino Hussein, Ahmad MohdAziz Abualigah, Laith |
author_facet | Alzu'bi, Dalia Abdullah, Malak Hmeidi, Ismail AlAzab, Rami Gharaibeh, Maha El-Heis, Mwaffaq Almotairi, Khaled H. Forestiero, Agostino Hussein, Ahmad MohdAziz Abualigah, Laith |
author_sort | Alzu'bi, Dalia |
collection | PubMed |
description | Kidney tumor (KT) is one of the diseases that have affected our society and is the seventh most common tumor in both men and women worldwide. The early detection of KT has significant benefits in reducing death rates, producing preventive measures that reduce effects, and overcoming the tumor. Compared to the tedious and time-consuming traditional diagnosis, automatic detection algorithms of deep learning (DL) can save diagnosis time, improve test accuracy, reduce costs, and reduce the radiologist's workload. In this paper, we present detection models for diagnosing the presence of KTs in computed tomography (CT) scans. Toward detecting and classifying KT, we proposed 2D-CNN models; three models are concerning KT detection such as a 2D convolutional neural network with six layers (CNN-6), a ResNet50 with 50 layers, and a VGG16 with 16 layers. The last model is for KT classification as a 2D convolutional neural network with four layers (CNN-4). In addition, a novel dataset from the King Abdullah University Hospital (KAUH) has been collected that consists of 8,400 images of 120 adult patients who have performed CT scans for suspected kidney masses. The dataset was divided into 80% for the training set and 20% for the testing set. The accuracy results for the detection models of 2D CNN-6 and ResNet50 reached 97%, 96%, and 60%, respectively. At the same time, the accuracy results for the classification model of the 2D CNN-4 reached 92%. Our novel models achieved promising results; they enhance the diagnosis of patient conditions with high accuracy, reducing radiologist's workload and providing them with a tool that can automatically assess the condition of the kidneys, reducing the risk of misdiagnosis. Furthermore, increasing the quality of healthcare service and early detection can change the disease's track and preserve the patient's life. |
format | Online Article Text |
id | pubmed-10266909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-102669092023-06-15 Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans Alzu'bi, Dalia Abdullah, Malak Hmeidi, Ismail AlAzab, Rami Gharaibeh, Maha El-Heis, Mwaffaq Almotairi, Khaled H. Forestiero, Agostino Hussein, Ahmad MohdAziz Abualigah, Laith J Healthc Eng Research Article Kidney tumor (KT) is one of the diseases that have affected our society and is the seventh most common tumor in both men and women worldwide. The early detection of KT has significant benefits in reducing death rates, producing preventive measures that reduce effects, and overcoming the tumor. Compared to the tedious and time-consuming traditional diagnosis, automatic detection algorithms of deep learning (DL) can save diagnosis time, improve test accuracy, reduce costs, and reduce the radiologist's workload. In this paper, we present detection models for diagnosing the presence of KTs in computed tomography (CT) scans. Toward detecting and classifying KT, we proposed 2D-CNN models; three models are concerning KT detection such as a 2D convolutional neural network with six layers (CNN-6), a ResNet50 with 50 layers, and a VGG16 with 16 layers. The last model is for KT classification as a 2D convolutional neural network with four layers (CNN-4). In addition, a novel dataset from the King Abdullah University Hospital (KAUH) has been collected that consists of 8,400 images of 120 adult patients who have performed CT scans for suspected kidney masses. The dataset was divided into 80% for the training set and 20% for the testing set. The accuracy results for the detection models of 2D CNN-6 and ResNet50 reached 97%, 96%, and 60%, respectively. At the same time, the accuracy results for the classification model of the 2D CNN-4 reached 92%. Our novel models achieved promising results; they enhance the diagnosis of patient conditions with high accuracy, reducing radiologist's workload and providing them with a tool that can automatically assess the condition of the kidneys, reducing the risk of misdiagnosis. Furthermore, increasing the quality of healthcare service and early detection can change the disease's track and preserve the patient's life. Hindawi 2022-10-22 /pmc/articles/PMC10266909/ /pubmed/37323471 http://dx.doi.org/10.1155/2022/3861161 Text en Copyright © 2022 Dalia Alzu'bi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Alzu'bi, Dalia Abdullah, Malak Hmeidi, Ismail AlAzab, Rami Gharaibeh, Maha El-Heis, Mwaffaq Almotairi, Khaled H. Forestiero, Agostino Hussein, Ahmad MohdAziz Abualigah, Laith Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title | Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title_full | Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title_fullStr | Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title_full_unstemmed | Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title_short | Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans |
title_sort | kidney tumor detection and classification based on deep learning approaches: a new dataset in ct scans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266909/ https://www.ncbi.nlm.nih.gov/pubmed/37323471 http://dx.doi.org/10.1155/2022/3861161 |
work_keys_str_mv | AT alzubidalia kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT abdullahmalak kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT hmeidiismail kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT alazabrami kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT gharaibehmaha kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT elheismwaffaq kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT almotairikhaledh kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT forestieroagostino kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT husseinahmadmohdaziz kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans AT abualigahlaith kidneytumordetectionandclassificationbasedondeeplearningapproachesanewdatasetinctscans |