Cargando…
Host specificity and adaptive evolution in settlement behaviour of coral-associated barnacle larvae (Cirripedia: Pyrgomatidae)
Coral-associated organisms often exhibit a continuum of host specificities. We do not know whether the variation in host specificity is related to the settlement organs or preferential settlement behaviours of the larvae. We examined the morphology of attachment discs, the settlement and metamorphos...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267106/ https://www.ncbi.nlm.nih.gov/pubmed/37316644 http://dx.doi.org/10.1038/s41598-023-33738-3 |
Sumario: | Coral-associated organisms often exhibit a continuum of host specificities. We do not know whether the variation in host specificity is related to the settlement organs or preferential settlement behaviours of the larvae. We examined the morphology of attachment discs, the settlement and metamorphosis of coral barnacles—Pyrgoma cancellatum (lives in a single coral species), Nobia grandis (two families of corals), and Armatobalanus allium (six families of corals). Our results revealed that the attachment organ of all three species are spear-shaped with sparse villi, indicating that the morphology of the attachment organs does not vary among species with different host specificities. Larvae of P. cancellatum and N. grandis only settle on their specific hosts, suggesting that chemical cues are involved in the settlement. Cyprids of N. grandis display close searching behaviour before settlement. Cyprids of P. cancellatum settle immediately on their specific host corals, without any exploratory behaviour. The host specificity and exploratory behaviours of coral barnacle cyprids are results of adaptive evolution. We argue that there is a trade-off between exploration and energy conservation for metamorphosis processes. Coral barnacle metamorphosis is longer when compared to free-living species, likely because it involves the development of a tube-shaped base on the coral surface. |
---|