Cargando…

Compositional modeling of gas-condensate viscosity using ensemble approach

In gas-condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. This goal is possible if the amount of viscosity of the liquids released below the dew point is ava...

Descripción completa

Detalles Bibliográficos
Autores principales: Rezaei, Farzaneh, Akbari, Mohammad, Rafiei, Yousef, Hemmati-Sarapardeh, Abdolhossein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267160/
https://www.ncbi.nlm.nih.gov/pubmed/37316502
http://dx.doi.org/10.1038/s41598-023-36122-3
Descripción
Sumario:In gas-condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. This goal is possible if the amount of viscosity of the liquids released below the dew point is available. In this study, the most comprehensive database related to the viscosity of gas condensate, including 1370 laboratory data was used. Several intelligent techniques, including Ensemble methods, support vector regression (SVR), K-nearest neighbors (KNN), Radial basis function (RBF), and Multilayer Perceptron (MLP) optimized by Bayesian Regularization and Levenberg–Marquardt were applied for modeling. In models presented in the literature, one of the input parameters for the development of the models is solution gas oil ratio (Rs). Measuring Rs in wellhead requires special equipment and is somewhat difficult. Also, measuring this parameter in the laboratory requires spending time and money. According to the mentioned cases, in this research, unlike the research done in the literature, Rs parameter was not used to develop the models. The input parameters for the development of the models presented in this research were temperature, pressure and condensate composition. The data used includes a wide range of temperature and pressure, and the models presented in this research are the most accurate models to date for predicting the condensate viscosity. Using the mentioned intelligent approaches, precise compositional models were presented to predict the viscosity of gas/condensate at different temperatures and pressures for different gas components. Ensemble method with an average absolute percent relative error (AAPRE) of 4.83% was obtained as the most accurate model. Moreover, the AAPRE values for SVR, KNN, MLP-BR, MLP-LM, and RBF models developed in this study are 4.95%, 5.45%, 6.56%, 7.89%, and 10.9%, respectively. Then, the effect of input parameters on the viscosity of the condensate was determined by the relevancy factor using the results of the Ensemble methods. The most negative and positive effects of parameters on the gas condensate viscosity were related to the reservoir temperature and the mole fraction of C(11), respectively. Finally, suspicious laboratory data were determined and reported using the leverage technique.