Cargando…
Compositional modeling of gas-condensate viscosity using ensemble approach
In gas-condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. This goal is possible if the amount of viscosity of the liquids released below the dew point is ava...
Autores principales: | Rezaei, Farzaneh, Akbari, Mohammad, Rafiei, Yousef, Hemmati-Sarapardeh, Abdolhossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267160/ https://www.ncbi.nlm.nih.gov/pubmed/37316502 http://dx.doi.org/10.1038/s41598-023-36122-3 |
Ejemplares similares
-
Comparative Analysis of Machine Learning Models for Nanofluids Viscosity Assessment
por: Shateri, Mohammadhadi, et al.
Publicado: (2020) -
Modeling Viscosity
of CO(2)–N(2) Gaseous Mixtures Using Robust
Tree-Based Techniques: Extra
Tree, Random Forest, GBoost, and LightGBM
por: Zheng, Haimin, et al.
Publicado: (2023) -
Viscosity of Ionic Liquids: Application of the Eyring’s Theory and a Committee Machine Intelligent System
por: Mousavi, Seyed Pezhman, et al.
Publicado: (2020) -
Modeling of the
Sintered Density in Cu-Al Alloy Using
Machine Learning Approaches
por: Asnaashari, Saleh, et al.
Publicado: (2023) -
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023)