Cargando…

Starvation hardiness as preadaptation for life in subterranean habitats

Most subterranean habitats, especially caves, are considered extreme environments, mainly because of the limited and erratic food supply and constant darkness. In temperate regions, many climatic conditions, such as temperature and air humidity, are periodically less adverse or even more favourable...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozel, Peter, Novak, Tone, Janžekovič, Franc, Lipovšek, Saška
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267165/
https://www.ncbi.nlm.nih.gov/pubmed/37316704
http://dx.doi.org/10.1038/s41598-023-36556-9
Descripción
Sumario:Most subterranean habitats, especially caves, are considered extreme environments, mainly because of the limited and erratic food supply and constant darkness. In temperate regions, many climatic conditions, such as temperature and air humidity, are periodically less adverse or even more favourable in caves than the harsh seasonal weather on the surface. Accordingly, many animal species search for hibernacula in caves. These overwintering, non-specialized subterranean species (non-troglobionts) show various modes of dormancy and ongoing development. Since they do not feed, they all undergo periodic starvation, a preadaptation, which might evolve in permanent starvation hardiness, such as found in most specialized subterranean species (troglobionts). To this end, we performed a comparative analysis of energy-supplying compounds in eleven most common terrestrial non-troglobiont species during winter in central European caves. We found highly heterogeneous responses to starvation, which are rather consistent with the degree of energetic adaptation to the habitat than to overwintering mode. The consumption of energy-supplying compounds was strongly higher taxa-dependant; glycogen is the main energy store in gastropods, lipids in insects, and arachnids rely on both reserve compounds. We assume that permanent starvation hardiness in specialized subterranean species might evolved in many different ways as shown in this study.