Cargando…
Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury
Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267696/ https://www.ncbi.nlm.nih.gov/pubmed/37029780 http://dx.doi.org/10.1093/stmcls/sxad028 |
_version_ | 1785058978954215424 |
---|---|
author | Imai, Ryotaro Tamura, Ryota Yo, Masahiro Sato, Mizuto Fukumura, Mariko Takahara, Kento Kase, Yoshitaka Okano, Hideyuki Toda, Masahiro |
author_facet | Imai, Ryotaro Tamura, Ryota Yo, Masahiro Sato, Mizuto Fukumura, Mariko Takahara, Kento Kase, Yoshitaka Okano, Hideyuki Toda, Masahiro |
author_sort | Imai, Ryotaro |
collection | PubMed |
description | Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis. |
format | Online Article Text |
id | pubmed-10267696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102676962023-06-15 Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury Imai, Ryotaro Tamura, Ryota Yo, Masahiro Sato, Mizuto Fukumura, Mariko Takahara, Kento Kase, Yoshitaka Okano, Hideyuki Toda, Masahiro Stem Cells Regenerative Medicine Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis. Oxford University Press 2023-04-08 /pmc/articles/PMC10267696/ /pubmed/37029780 http://dx.doi.org/10.1093/stmcls/sxad028 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regenerative Medicine Imai, Ryotaro Tamura, Ryota Yo, Masahiro Sato, Mizuto Fukumura, Mariko Takahara, Kento Kase, Yoshitaka Okano, Hideyuki Toda, Masahiro Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title | Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title_full | Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title_fullStr | Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title_full_unstemmed | Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title_short | Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury |
title_sort | neuroprotective effects of genome-edited human ips cell-derived neural stem/progenitor cells on traumatic brain injury |
topic | Regenerative Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267696/ https://www.ncbi.nlm.nih.gov/pubmed/37029780 http://dx.doi.org/10.1093/stmcls/sxad028 |
work_keys_str_mv | AT imairyotaro neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT tamuraryota neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT yomasahiro neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT satomizuto neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT fukumuramariko neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT takaharakento neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT kaseyoshitaka neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT okanohideyuki neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury AT todamasahiro neuroprotectiveeffectsofgenomeeditedhumanipscellderivedneuralstemprogenitorcellsontraumaticbraininjury |