Cargando…
Dynamic pruning group equivariant network for motor imagery EEG recognition
Introduction: The decoding of the motor imaging electroencephalogram (MI-EEG) is the most critical part of the brain-computer interface (BCI) system. However, the inherent complexity of EEG signals makes it challenging to analyze and model them. Methods: In order to effectively extract and classify...
Autores principales: | Tang, Xianlun, Zhang, Wei, Wang, Huiming, Wang, Tianzhu, Tan, Cong, Zou, Mi, Xu, Zihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267707/ https://www.ncbi.nlm.nih.gov/pubmed/37324415 http://dx.doi.org/10.3389/fbioe.2023.917328 |
Ejemplares similares
-
Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition
por: Hou, Yimin, et al.
Publicado: (2022) -
Surface Defect Segmentation Algorithm of Steel Plate Based on Geometric Median Filter Pruning
por: Hao, Zhiqiang, et al.
Publicado: (2022) -
Deep temporal networks for EEG-based motor imagery recognition
por: Sharma, Neha, et al.
Publicado: (2023) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Lorentz group equivariant autoencoders
por: Hao, Zichun, et al.
Publicado: (2023)