Cargando…
Issue of Data Imbalance on Low Birthweight Baby Outcomes Prediction and Associated Risk Factors Identification: Establishment of Benchmarking Key Machine Learning Models With Data Rebalancing Strategies
BACKGROUND: Low birthweight (LBW) is a leading cause of neonatal mortality in the United States and a major causative factor of adverse health effects in newborns. Identifying high-risk patients early in prenatal care is crucial to preventing adverse outcomes. Previous studies have proposed various...
Autores principales: | Ren, Yang, Wu, Dezhi, Tong, Yan, López-DeFede, Ana, Gareau, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267797/ https://www.ncbi.nlm.nih.gov/pubmed/37256674 http://dx.doi.org/10.2196/44081 |
Ejemplares similares
-
Data allocation service ADAS for the data rebalancing of ATLAS
por: Vamosi, Ralf, et al.
Publicado: (2018) -
Automatic rebalancing of data in ATLAS distributed data management
por: Barisits, Martin-Stefan, et al.
Publicado: (2017) -
Automatic rebalancing of data in ATLAS distributed data management
por: Barisits, Martin-Stefan, et al.
Publicado: (2016) -
Allocation Optimization for the ATLAS Rebalancing Data Service
por: Vamosi, Ralf, et al.
Publicado: (2018) -
Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention
por: Lu, Chang, et al.
Publicado: (2022)