Cargando…
Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles
[Image: see text] Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267890/ https://www.ncbi.nlm.nih.gov/pubmed/37262310 http://dx.doi.org/10.1021/acs.analchem.2c05389 |
_version_ | 1785059021179322368 |
---|---|
author | Su, Qi-Zhi Vera, Paula Nerín, Cristina |
author_facet | Su, Qi-Zhi Vera, Paula Nerín, Cristina |
author_sort | Su, Qi-Zhi |
collection | PubMed |
description | [Image: see text] Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various libraries. We then proposed a workflow to process untargeted screening data acquired by liquid chromatography high-resolution mass spectrometry. These tools were subsequently employed to data originating from recycled high-density polyethylene (rHDPE) obtained from milk bottles. A total of 83 compounds were identified, with 66 easily annotated by making use of our in-house MS/MS libraries and the mspcompiler R package. In silico fragmentation combined with data obtained from gas chromatography–mass spectrometry and lists of chemicals related to plastics were used to identify those remaining unknown. A pseudo-multiple reaction monitoring method was also applied to sensitively target and screen the identified chemicals in the samples. Quantification results demonstrated that a good sorting of postconsumer materials and a better recycling technology may be necessary for food contact applications. Removal or reduction of non-volatile substances, such as octocrylene and 2-ethylhexyl-4-methoxycinnamate, is still challenging but vital for the safe use of rHDPE as food contact materials. |
format | Online Article Text |
id | pubmed-10267890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102678902023-06-15 Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles Su, Qi-Zhi Vera, Paula Nerín, Cristina Anal Chem [Image: see text] Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various libraries. We then proposed a workflow to process untargeted screening data acquired by liquid chromatography high-resolution mass spectrometry. These tools were subsequently employed to data originating from recycled high-density polyethylene (rHDPE) obtained from milk bottles. A total of 83 compounds were identified, with 66 easily annotated by making use of our in-house MS/MS libraries and the mspcompiler R package. In silico fragmentation combined with data obtained from gas chromatography–mass spectrometry and lists of chemicals related to plastics were used to identify those remaining unknown. A pseudo-multiple reaction monitoring method was also applied to sensitively target and screen the identified chemicals in the samples. Quantification results demonstrated that a good sorting of postconsumer materials and a better recycling technology may be necessary for food contact applications. Removal or reduction of non-volatile substances, such as octocrylene and 2-ethylhexyl-4-methoxycinnamate, is still challenging but vital for the safe use of rHDPE as food contact materials. American Chemical Society 2023-06-01 /pmc/articles/PMC10267890/ /pubmed/37262310 http://dx.doi.org/10.1021/acs.analchem.2c05389 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Su, Qi-Zhi Vera, Paula Nerín, Cristina Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles |
title | Combination
of Structure Databases, In Silico Fragmentation,
and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants
from Recycled High-Density Polyethylene Milk Bottles |
title_full | Combination
of Structure Databases, In Silico Fragmentation,
and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants
from Recycled High-Density Polyethylene Milk Bottles |
title_fullStr | Combination
of Structure Databases, In Silico Fragmentation,
and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants
from Recycled High-Density Polyethylene Milk Bottles |
title_full_unstemmed | Combination
of Structure Databases, In Silico Fragmentation,
and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants
from Recycled High-Density Polyethylene Milk Bottles |
title_short | Combination
of Structure Databases, In Silico Fragmentation,
and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants
from Recycled High-Density Polyethylene Milk Bottles |
title_sort | combination
of structure databases, in silico fragmentation,
and ms/ms libraries for untargeted screening of non-volatile migrants
from recycled high-density polyethylene milk bottles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267890/ https://www.ncbi.nlm.nih.gov/pubmed/37262310 http://dx.doi.org/10.1021/acs.analchem.2c05389 |
work_keys_str_mv | AT suqizhi combinationofstructuredatabasesinsilicofragmentationandmsmslibrariesforuntargetedscreeningofnonvolatilemigrantsfromrecycledhighdensitypolyethylenemilkbottles AT verapaula combinationofstructuredatabasesinsilicofragmentationandmsmslibrariesforuntargetedscreeningofnonvolatilemigrantsfromrecycledhighdensitypolyethylenemilkbottles AT nerincristina combinationofstructuredatabasesinsilicofragmentationandmsmslibrariesforuntargetedscreeningofnonvolatilemigrantsfromrecycledhighdensitypolyethylenemilkbottles |