Cargando…
Is machine learning-based assessment of tumor-infiltrating lymphocytes on standard histologic images associated with outcomes of immunotherapy in patients with NSCLC?
Autores principales: | Inamura, Kentaro, Shigematsu, Yasuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267919/ https://www.ncbi.nlm.nih.gov/pubmed/37324072 http://dx.doi.org/10.21037/jtd-22-1862 |
Ejemplares similares
-
The need to optimize chemotherapy regimens for chemo-immunotherapy
por: Inamura, Kentaro, et al.
Publicado: (2022) -
Tumor-resident intracellular bacteria benefit metastasis
por: Koyama, Kei, et al.
Publicado: (2023) -
Tumor-infiltrating lymphocytes for melanoma immunotherapy
por: Kepp, Oliver, et al.
Publicado: (2023) -
A Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Images
por: Shvetsov, Nikita, et al.
Publicado: (2022) -
The negative relationship between patients with NSCLC harbored STK11/KEAP1 copy number variation and immune microenvironment infiltration
por: Zhang, Chenyue
Publicado: (2021)