Cargando…
Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR(+)/HER2(−) breast cancer
BACKGROUND: Breast cancer has the highest incidence and mortality rates among women worldwide. Hormone receptor (HR)(+)/human epidermal growth factor receptor 2 (HER2)(−) breast cancer is the most common molecular subtype, accounting for 50–79% of breast cancers. Deep learning has been widely used i...
Autores principales: | Hu, Jia, Lv, Hong, Zhao, Shen, Lin, Cai-Jin, Su, Guan-Hua, Shao, Zhi-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267923/ https://www.ncbi.nlm.nih.gov/pubmed/37324098 http://dx.doi.org/10.21037/jtd-23-445 |
Ejemplares similares
-
Clinicopathological features and prognosis of patients with HER2-low breast cancer
por: Yang, Xin, et al.
Publicado: (2023) -
Longitudinal multi-omics study of palbociclib resistance in HR-positive/HER2-negative metastatic breast cancer
por: Park, Yeon Hee, et al.
Publicado: (2023) -
Clinicopathologic features, genomic profiles and outcomes of younger vs. older Chinese hormone receptor-positive (HR+)/HER2-negative (HER2-) metastatic breast cancer patients
por: Wang, Jinhao, et al.
Publicado: (2023) -
Incorporating clinicopathological and molecular risk prediction tools to improve outcomes in early HR+/HER2– breast cancer
por: Curigliano, Giuseppe, et al.
Publicado: (2023) -
Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features
por: Xie, Gangcai, et al.
Publicado: (2019)