Cargando…
Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses
BACKGROUND: Capmatinib (CAP) is a drug that has been used to treat non-small cell lung cancer (NSCLC) in adults. Presently, its novel effects on skeletal muscle insulin signaling, inflammation, and lipogenesis in adipocytes have been uncovered with a perspective of drug repositioning. However, the i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chang Gung University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267969/ https://www.ncbi.nlm.nih.gov/pubmed/35483573 http://dx.doi.org/10.1016/j.bj.2022.04.005 |
_version_ | 1785059038715707392 |
---|---|
author | Park, Hyung Sub Abd El-Aty, A.M. Jeong, Ji Hoon Lee, Taeseung Jung, Tae Woo |
author_facet | Park, Hyung Sub Abd El-Aty, A.M. Jeong, Ji Hoon Lee, Taeseung Jung, Tae Woo |
author_sort | Park, Hyung Sub |
collection | PubMed |
description | BACKGROUND: Capmatinib (CAP) is a drug that has been used to treat non-small cell lung cancer (NSCLC) in adults. Presently, its novel effects on skeletal muscle insulin signaling, inflammation, and lipogenesis in adipocytes have been uncovered with a perspective of drug repositioning. However, the impact of CAP on LPS-mediated interaction between human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes has yet to be investigated. METHODS: HUVECs and THP-1 monocytes were treated with LPS and CAP. The protein expression levels were determined using Western blotting. Target protein knockdown was conducted using small interfering (si) RNA transfection. Interactions between HUVECs and THP-1 cells were assayed using green fluorescent dye. RESULTS: This study found that CAP treatment ameliorated cell adhesion between THP-1 monocytes and HUVECs and the expression of adhesive molecules, such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Moreover, phosphorylation of inflammatory markers, such as NFκB and IκB as well as TNFα and monocyte chemoattractant protein-1 (MCP-1) released from HUVECs and THP-1 monocytes, was prevented by CAP treatment. Treatment with CAP augmented PPARδ and IL-10 expression. siRNA-associated suppression of PPARδ and IL-10 abolished the effects of CAP on cell interaction between HUVECs and THP-1 cells and inflammatory responses. Further, PPARδ siRNA mitigated CAP-mediated induction of IL-10 expression. CONCLUSION: These findings imply that CAP improves inflamed endothelial-monocyte adhesion via a PPARδ/IL-10-dependent pathway. The current study provides in vitro evidence for a therapeutic approach for treating atherosclerosis. |
format | Online Article Text |
id | pubmed-10267969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Chang Gung University |
record_format | MEDLINE/PubMed |
spelling | pubmed-102679692023-06-15 Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses Park, Hyung Sub Abd El-Aty, A.M. Jeong, Ji Hoon Lee, Taeseung Jung, Tae Woo Biomed J Original Article BACKGROUND: Capmatinib (CAP) is a drug that has been used to treat non-small cell lung cancer (NSCLC) in adults. Presently, its novel effects on skeletal muscle insulin signaling, inflammation, and lipogenesis in adipocytes have been uncovered with a perspective of drug repositioning. However, the impact of CAP on LPS-mediated interaction between human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes has yet to be investigated. METHODS: HUVECs and THP-1 monocytes were treated with LPS and CAP. The protein expression levels were determined using Western blotting. Target protein knockdown was conducted using small interfering (si) RNA transfection. Interactions between HUVECs and THP-1 cells were assayed using green fluorescent dye. RESULTS: This study found that CAP treatment ameliorated cell adhesion between THP-1 monocytes and HUVECs and the expression of adhesive molecules, such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Moreover, phosphorylation of inflammatory markers, such as NFκB and IκB as well as TNFα and monocyte chemoattractant protein-1 (MCP-1) released from HUVECs and THP-1 monocytes, was prevented by CAP treatment. Treatment with CAP augmented PPARδ and IL-10 expression. siRNA-associated suppression of PPARδ and IL-10 abolished the effects of CAP on cell interaction between HUVECs and THP-1 cells and inflammatory responses. Further, PPARδ siRNA mitigated CAP-mediated induction of IL-10 expression. CONCLUSION: These findings imply that CAP improves inflamed endothelial-monocyte adhesion via a PPARδ/IL-10-dependent pathway. The current study provides in vitro evidence for a therapeutic approach for treating atherosclerosis. Chang Gung University 2023-04 2022-04-26 /pmc/articles/PMC10267969/ /pubmed/35483573 http://dx.doi.org/10.1016/j.bj.2022.04.005 Text en © 2022 The Authors. Published by Elsevier B.V. on behalf of Chang Gung University. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Park, Hyung Sub Abd El-Aty, A.M. Jeong, Ji Hoon Lee, Taeseung Jung, Tae Woo Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title | Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title_full | Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title_fullStr | Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title_full_unstemmed | Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title_short | Capmatinib suppresses LPS-induced interaction between HUVECs and THP-1 monocytes through suppression of inflammatory responses |
title_sort | capmatinib suppresses lps-induced interaction between huvecs and thp-1 monocytes through suppression of inflammatory responses |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267969/ https://www.ncbi.nlm.nih.gov/pubmed/35483573 http://dx.doi.org/10.1016/j.bj.2022.04.005 |
work_keys_str_mv | AT parkhyungsub capmatinibsuppresseslpsinducedinteractionbetweenhuvecsandthp1monocytesthroughsuppressionofinflammatoryresponses AT abdelatyam capmatinibsuppresseslpsinducedinteractionbetweenhuvecsandthp1monocytesthroughsuppressionofinflammatoryresponses AT jeongjihoon capmatinibsuppresseslpsinducedinteractionbetweenhuvecsandthp1monocytesthroughsuppressionofinflammatoryresponses AT leetaeseung capmatinibsuppresseslpsinducedinteractionbetweenhuvecsandthp1monocytesthroughsuppressionofinflammatoryresponses AT jungtaewoo capmatinibsuppresseslpsinducedinteractionbetweenhuvecsandthp1monocytesthroughsuppressionofinflammatoryresponses |