Cargando…
Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustace...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268257/ https://www.ncbi.nlm.nih.gov/pubmed/37276415 http://dx.doi.org/10.1073/pnas.2216574120 |
_version_ | 1785145926146326528 |
---|---|
author | Shi, Xiu-Zhen Yang, Ming-Chong Kang, Xin-Le Li, Yan-Xue Hong, Pan-Pan Zhao, Xiao-Fan Vasta, Gerardo R. Wang, Jin-Xing |
author_facet | Shi, Xiu-Zhen Yang, Ming-Chong Kang, Xin-Le Li, Yan-Xue Hong, Pan-Pan Zhao, Xiao-Fan Vasta, Gerardo R. Wang, Jin-Xing |
author_sort | Shi, Xiu-Zhen |
collection | PubMed |
description | The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases. |
format | Online Article Text |
id | pubmed-10268257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-102682572023-12-05 Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans Shi, Xiu-Zhen Yang, Ming-Chong Kang, Xin-Le Li, Yan-Xue Hong, Pan-Pan Zhao, Xiao-Fan Vasta, Gerardo R. Wang, Jin-Xing Proc Natl Acad Sci U S A Biological Sciences The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases. National Academy of Sciences 2023-06-05 2023-06-13 /pmc/articles/PMC10268257/ /pubmed/37276415 http://dx.doi.org/10.1073/pnas.2216574120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Shi, Xiu-Zhen Yang, Ming-Chong Kang, Xin-Le Li, Yan-Xue Hong, Pan-Pan Zhao, Xiao-Fan Vasta, Gerardo R. Wang, Jin-Xing Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title | Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title_full | Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title_fullStr | Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title_full_unstemmed | Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title_short | Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans |
title_sort | scavenger receptor b2, a type iii membrane pattern recognition receptor, senses lps and activates the imd pathway in crustaceans |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268257/ https://www.ncbi.nlm.nih.gov/pubmed/37276415 http://dx.doi.org/10.1073/pnas.2216574120 |
work_keys_str_mv | AT shixiuzhen scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT yangmingchong scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT kangxinle scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT liyanxue scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT hongpanpan scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT zhaoxiaofan scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT vastagerardor scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans AT wangjinxing scavengerreceptorb2atypeiiimembranepatternrecognitionreceptorsenseslpsandactivatestheimdpathwayincrustaceans |