Cargando…

Elemental Analysis of Kimchi Cabbage Leaves, Roots, and Soil and Its Potential Impact on Human Health

[Image: see text] In view of their rich mineral content and flavor, kimchi cabbage leaves and roots have high nutritional and medicinal values. In this study, we quantified major nutrient (Ca, Cu, Fe, K, Mg, Na, and Zn), trace (B, Be, Bi, Co, Ga, Li, Ni, Se, Sr, V, and Cr), and toxic (Pb, Cd, Tl, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, In Min, Jung, Sera, Jeong, Ji Young, Kim, Min Ji, Jang, Ha-Young, Lee, Jong-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268290/
https://www.ncbi.nlm.nih.gov/pubmed/37323378
http://dx.doi.org/10.1021/acsomega.3c01672
Descripción
Sumario:[Image: see text] In view of their rich mineral content and flavor, kimchi cabbage leaves and roots have high nutritional and medicinal values. In this study, we quantified major nutrient (Ca, Cu, Fe, K, Mg, Na, and Zn), trace (B, Be, Bi, Co, Ga, Li, Ni, Se, Sr, V, and Cr), and toxic (Pb, Cd, Tl, and In) elements in kimchi cabbage cultivation soil, leaves, and roots. The analysis method relied on inductively coupled plasma-optical emission spectrometry for major nutrient elements and inductively coupled plasma-mass spectrometry for trace and toxic elements and complied with the Association of Official Analytical Chemists (AOAC) guidelines. Kimchi cabbage leaves and roots featured high contents of K, B, and Be, while the contents of all toxic elements in all samples were below the WHO-stipulated threshold values and therefore did not pose any health risks. The distribution of elements was characterized by heat map analysis and linear discriminant analysis to reveal independent separation according to the content of each element. The analysis confirmed that there was a difference in content between the groups and that each group was independently distributed. This study may contribute to a better understanding of the complex relationships between plant physiology, cultivation condition, and human health.