Cargando…
Contrastive learning in protein language space predicts interactions between drugs and protein targets
Sequence-based prediction of drug–target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computationa...
Autores principales: | Singh, Rohit, Sledzieski, Samuel, Bryson, Bryan, Cowen, Lenore, Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268324/ https://www.ncbi.nlm.nih.gov/pubmed/37289807 http://dx.doi.org/10.1073/pnas.2220778120 |
Ejemplares similares
-
TT3D: Leveraging precomputed protein 3D sequence models to predict protein–protein interactions
por: Sledzieski, Samuel, et al.
Publicado: (2023) -
Topsy-Turvy: integrating a global view into sequence-based PPI prediction
por: Singh, Rohit, et al.
Publicado: (2022) -
Democratizing Protein Language Models with Parameter-Efficient Fine-Tuning
por: Sledzieski, Samuel, et al.
Publicado: (2023) -
Matt: Local Flexibility Aids Protein Multiple Structure Alignment
por: Menke, Matthew, et al.
Publicado: (2008) -
Compressive genomics for protein databases
por: Daniels, Noah M., et al.
Publicado: (2013)