Cargando…
Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the mol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268325/ https://www.ncbi.nlm.nih.gov/pubmed/37276409 http://dx.doi.org/10.1073/pnas.2216144120 |
_version_ | 1785145929498624000 |
---|---|
author | Tinoco, Amanda I. Mitchison-Field, Lorna M. Y. Bradford, Jacob Renicke, Christian Perrin, Dimitri Bay, Line K. Pringle, John R. Cleves, Phillip A. |
author_facet | Tinoco, Amanda I. Mitchison-Field, Lorna M. Y. Bradford, Jacob Renicke, Christian Perrin, Dimitri Bay, Line K. Pringle, John R. Cleves, Phillip A. |
author_sort | Tinoco, Amanda I. |
collection | PubMed |
description | Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4β, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals. |
format | Online Article Text |
id | pubmed-10268325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-102683252023-12-05 Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution Tinoco, Amanda I. Mitchison-Field, Lorna M. Y. Bradford, Jacob Renicke, Christian Perrin, Dimitri Bay, Line K. Pringle, John R. Cleves, Phillip A. Proc Natl Acad Sci U S A Biological Sciences Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4β, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals. National Academy of Sciences 2023-06-05 2023-06-13 /pmc/articles/PMC10268325/ /pubmed/37276409 http://dx.doi.org/10.1073/pnas.2216144120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Tinoco, Amanda I. Mitchison-Field, Lorna M. Y. Bradford, Jacob Renicke, Christian Perrin, Dimitri Bay, Line K. Pringle, John R. Cleves, Phillip A. Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title | Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title_full | Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title_fullStr | Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title_full_unstemmed | Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title_short | Role of the bicarbonate transporter SLC4γ in stony-coral skeleton formation and evolution |
title_sort | role of the bicarbonate transporter slc4γ in stony-coral skeleton formation and evolution |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268325/ https://www.ncbi.nlm.nih.gov/pubmed/37276409 http://dx.doi.org/10.1073/pnas.2216144120 |
work_keys_str_mv | AT tinocoamandai roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT mitchisonfieldlornamy roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT bradfordjacob roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT renickechristian roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT perrindimitri roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT baylinek roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT pringlejohnr roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution AT clevesphillipa roleofthebicarbonatetransporterslc4ginstonycoralskeletonformationandevolution |